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Abstract. As data centers attempt to cope with the exponential growth
of data, new techniques for intelligent, software-defined data centers
(SDDC) are being developed to confront the scale and pace of chang-
ing resources and requirements. For cost-constrained environments, like
those increasingly present in scientific research labs, SDDCs also present
the possibility to provide better reliability and performability with no
additional hardware through the use of dynamic syndrome allocation.
To do so the middleware layers of SDDCs must be able to calculate and
account for complex dependence relationships to determine an optimal
data layout. This challenge is exacerbated by the growth of constraints
on the dependence problem when available resources are both large (due
to a higher number of syndromes that can be stored) and small (due to
the lack of available space for syndrome allocation). We present a quan-
titative method for characterizing these challenges using an analysis of
attack domains for high-dimension variants of the n-queens problem that
enables performable solutions via the SMT solver Z3. We demonstrate
correctness of our technique, and provide experimental evidence of its
efficacy; our implementation is publicly available.

Keywords: Big data · Reliability · Storage · n-queens · Intelligent sys-
tems

1 Introduction

One of the largest challenges facing the storage industry is the continued expo-
nential growth of Big Data. The growth of data in the modern world is exceeding
the ability of designers and researchers to build appropriate platforms [11,26] but
presents a special challenge to scientific labs and non-profit organizations whose
budgets have not grown (and often have been cut) as their data needs steeply
rise. The NASA Center for Climate Simulation revealed that while their com-
puting needs had increased 300 fold in the last ten years, storage had increased
2,000 fold, and called storage infrastructure one of the largest challenges facing
climate scientists [8]. This trend has been driving reliance on commercial off
the shelf (COTS) solutions to drive down the cost of data ownership. Despite
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its importance, the goal of affordable data curation comes at a cost in terms of
reliability creating a difficult to solve system design constraints problem.

To cope with the increase in cost, deduplication techniques are commonly
used in many storage systems. Deduplication is a storage efficiency improvement
technique that removes the duplicate substrings in a storage system and replaces
them with references to the single location storing the duplicate data. While this
achieves a higher storage efficiency in terms of reducing the cost of ownership of a
system, it can negatively impact the reliability of the underlying storage system
since loss of a block with high number of references means a critical number of
files being lost unrecoverably [22].

Data reliability was previously improved using enterprise-class storage
devices that typically suffer faults as much as two orders of magnitude less often
than COTS storage devices. In the face of the exponential growth of the digital
universe [28] the cost of this solution has become prohibitively expensive, inspir-
ing a switch to near-line components, thus lessening storage reliability guaran-
tees. While reliability could be improved through the addition of new hardware,
today the scale of growth of inexpensive storage is being exceeded by the growth
of Big Data.

In most storage systems reliability improvements are achieved through the
allocation of additional disks in Redundant Arrays of Independent Disks (RAID)
[20]. RAID arrays achieve reliability through the allocation of coding syndromes
[21] which create dependence relationships in the storage system to allow recov-
ery of files after failures. While RAID systems are incredibly effective at the task
of improving reliability, they add to the cost of the storage systems in which they
are deployed.

Methods used to increase reliability also increases the cost of maintaining
the storage system, and same is true for the methods that reduce the cost; they
also reduce reliability. In order to meet these cost and reliability constraints,
and find a way to break the proportional relationship in between, previously we
have conducted a study where we have documented that systems are often over-
provisioned, and this over-provisioning level is highly predictable using intelligent
systems algorithms [23]. Using these models, we have proposed that dynamically
allocated reliability syndromes could be created and stored in this excess capac-
ity to improve reliability without the addition of new hardware [3]. Based on
this result, it is now possible to modify traditional RAID schemes to dynam-
ically allocate new syndromes for reliability in over-provisioned space through
the risk-averse prediction of available storage over the next epoch of operation of
a storage system. Furthermore this can be done while maintaining quality of ser-
vice (QoS) and availability of the storage system while simultaneously providing
maximum additional reliability. The only assumption is that the additional syn-
dromes can be placed in a way that respects data dependence constraints. The
ability to predict the expected level of over-provisioning allows us to create soft-
ware defined data centers which can allocate virtual disks made up of free space
compiled from across the data center to hold additional reliability syndromes.
An unsolved challenge which stands in the way of this technique, however, is the
development of algorithms that account for complex data dependencies such as
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existing reliability syndromes and deduplication, providing a strategy for syn-
drome storage and new RAID relationships in a performable way that maximizes
the additional number of reliability syndromes that can be allocated without vio-
lating the dependence constraints on those syndromes.

In order to solve these dependence constraints we cast our problem into a
unique variant of the n-Queens problem. We map a RAID array into a math-
ematical representation of a chess board with a set number of ranks (defining
the y-axis) and files (defining the x-axis). We propose a quantitative solution
for virtual disk allocation in software defined data centers, respecting all depen-
dence constraints within the data center, or, when no such configuration exists,
identifying the unsatisfiability of the problem. This method allows us to take
advantage of the over-provisioned space without constraining our problem to
traditional RAID geometries. We propose solving this problem quantitatively
by mapping it to an innovative variation of the n-queens problem that utilizes
a 3D Latin board configuration [12,16], nontraditional queen types and attack
domains, and population limits on the number of queens of a given type placed
within certain bounds.

The challenge of defining dynamic syndromes is inherently characterized by
a well-defined set of constraints: total number of disks, current disk utilization,
distribution of unutilized space, existing dependence relationships due to RAID
reliability syndromes, and deduplication relationships. By creating a mapping to
n-queens under these constraints, we can intuitively represent the problem in a
way that facilitates validation and harness the power of the Satisfiability Modulo
Theories (SMT) solver Z3 to return a constraint-satisfying solution or determine
that a solution cannot exist. Z3 [6] is a very efficient and freely available solver for
SMT, which is a decision problem for logical first order formulas with respect
to combinations of background theories including the uninterpreted functions
integral to our solution. The n-queens problem is a classic way to represent such
a constraint satisfaction problem [17,25] and a common benchmark for such a
solver [13]. Classification as a constraint satisfaction problem that can be solved
by Z3 has proven to be successful in other design domains, such as automating
design of encryption and signature schemes [1].

Our contributions include a new quantitative solution for the problem of
dynamic allocation of new reliability syndromes while respecting dependence
constraints to improve the reliability of software defined data centers without
the addition of new hardware. We define and prove a correct mapping of this
problem to a variation of the classic n-queens problem, thus enabling efficient
analysis via powerful SMT solvers like Z3. We provide an implementation in
Z3 for python and include a case study demonstrating the effectiveness of our
technique. This new solution will serve as the core for a dynamic allocation
system to be deployed in software-defined data centers which will be deployed
at the laboratories of partner organizations.

This paper is organized as follows: Sect. 2 provides background on depen-
dence relationships in storage systems, and related work in novel RAID geome-
tries. Section 3 introduces an encoding for this problem in a variant of n-Queens
mapping the problem of data layout strategies which respect all data dependence
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(a) Example of a virtual disk being con-
structed out of overprovisioned space.

(b) Example of independent syndrome cal-
culation as the XOR parity of diagonals.

Fig. 1. Example allocations of virtual disks from over-provisioned space.

contraints to maximize additional syndrome coverage for any given dataset to
the problem of placing novel queen-types on a Latin chess board; we discuss the
constraints of our problem in Sect. 4, and its implementation in Z3. We provide
experimental results demonstrating the efficacy and efficiency of our approach
in Sect. 5. Finally, Sect. 6 concludes and points to future work.

2 Characterizing File System Dependence

As we have shown in our previous work [3,23], it is possible to predict the future
storage resource needs of the users in a system. In recent work [3], we have
modeled user behaviors using the training data we obtained from a real system
to create and train Markov models, and predicted the future disk usage needs
of the users in an on-line fashion, and compared the results with the test data
we also obtained from the same system to measure the prediction performance.
We have observed that with a good clustering method and fine parameter tun-
ing, it is possible to predict user behaviors and resource requirements. We have
proposed this method for predicting over-provisioning, and further that it could
allow for dynamic improvement of reliability through the allocation of additional

Table 1. Annual rates of block loss (ABL) per system type with varying numbers of
additional syndromes (nsynd) allocated.

RAID5 conf. ABL (no syndromes) ABL (nsynd = 2) ABL (nsynd = 3)

5+1 1.79x105 1.31x10−7 1.92x10−15

8+1 4.60x105 1.02x10−6 5.06x10−14

10+1 8.06x105 2.76x10−6 1.79x10−13
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syndromes by creating new virtual disks using any over-provisioned storage that
are found to be independent of the current RAID grouping as shown in Fig. 1a.
Our experiments on real storage system data have shown that even when being
incredibly risk adverse, we can allocate between three and four additional syn-
dromes more than 50 % of the time, and on average allocate two additional syn-
dromes for all of the data and three additional syndromes for more than 90 % of
the data, dramatically improving the reliability of the system [3]. We analyzed
these improvements on systems with one petabyte of primary storage with ini-
tial RAID5 configurations of 5+1, 8+1 and 10+1 over which we introduce two
and three additional syndromes after predictions. Changes in reliability are mea-
sured using the rate of annual block loss (ABL), when taking into account whole
disk failures and latent sector errors. Table 1 illustrates the calculated ABLs for
three RAID5 configured primary storage systems, each provisioned for a maxi-
mum capacity of one petabyte. The steep increase in the reliability represented
by decrease in ABL rates as the number of allocated syndromes increases shows
the promise of such predictive analysis and dynamic allocation.

Allocation of new syndromes in order to increase the reliability is possi-
ble through the deployment of RAID5 XOR parity syndromes [20] or RAID6
Galois-field based syndromes [2,5]. Additional syndromes can be allocated using
techniques such as erasure coding, though they generally have a severe impact
on performance, and as a result, lower the QoS of the system [15]. As such, we
focus on alternative RAID geometries to make use of additional XOR parity and
Galois-field based syndromes.

In this paper we propose an efficient method for allocation of additional
syndromes. Additional coverage can be provided using non-traditional RAID
geometries as shown in Fig. 1b. While the idea of using non-traditional RAID
geometries itself is not new, and have been explored in previous studies
[18,19,27], prior work in this field has always maintained the assumption that
the layout of the RAID arrays are pre-defined. Instead, we propose the creation
of dynamic per-stripe geometries using over-provisioned space in an existing data
center.

When creating non-traditional RAID geometries, care must be taken to
respect data dependence relationships [24] to ensure that the new RAID strat-
egy improves reliability. We consider two types of data dependence relationships;
one resulting from pre-existing RAID groups, and the other from data dedupli-
cation [22].

2.1 Dependence Due to RAID

In order to improve reliability, a syndrome allocated as part of a RAID group
must be independent of all other syndromes computed within the data center.
There are two primary methods for establishing independence with respect to a
syndrome, and a set of data on disks. First and most simply, we consider a data
center D to be a collection of disks D = {d0, d1, d2, d3, . . .} protected by a set of
RAID strategies R = {R0, R1, R2, . . .} each of which is represented as a set of M
disks Rk = {dk,0, dk,1, dk,2, . . . dk,(M−1)} forming a stripe. Each stripe consists
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of a number of data and syndrome disks. For any two disks di ∈ D and dj ∈ D
there is a mutual dependence relationship ↔, di ↔ dj if ∃Rk ∈ R such that
di ∈ Rk and dj ∈ Rk. If no such Rk exists then di and dj are independent with
respect to RAID.

2.2 Dependence Due to Deduplication

Data deduplication is a wide spread technique which improves the storage
efficiency of a data center by eliminating redundant data. As shown in Fig. 2
deduplication identifies substrings of redundant data, typically between block
boundaries, stored in a data center and replaces the instances of all but one of
those substrings with a reference to a single stored instance on another disk.
This creates a critical dependence relationship as the loss of that disk, which
may be on another RAID group, may render the data which references it use-
less, resulting in correlated failures. As such data deduplication introduces one
way dependence relationships which we represent as di → dj when di depends
on dj . Given a disk di if ∃dl ∈ Rk such that di ∈ Rk and dl contains a reference
to deduplicated data on disk dj then the dependence relationship di → dj exists,
otherwise di is independent of dj with respect to deduplication.

I/O Stream
Deduplication Server Disk Pool

Fig. 2. Data deduplication identifies similar blocks within the data center, and elimi-
nates redundant information.

3 N -Queens with Dynamic Domains of Attack

In order to solve our problem and find a data layout that allows us to build
virtual disks which are independent of the data they are protecting, we provide
a mapping of our problem into a variant on the classical n-Queens [10] constraint
satisfaction problem with few alterations.

First, we adopt a Latin board, allowing us to examine our problem in a three
dimensional space [12,16]. We define this space according to three axes, the
level, rank, and file, as shown in Fig. 3. We further define a column on this Latin
board as the set of squares defined by a fixed rank and file across all levels of the
board. Each column in our Latin board corresponds to a disk within our data
center, with each rank consisting of a traditional RAID group. Levels represent
independent sub-problems solving for data independence for each disk in turn.
Thus, in practice, given a problem with N ranks and M files, we construct our
board with L = N · M levels.
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File

Rank

Level

Column

Fig. 3. Example Space with dimensions 3 × 8 × 8.

We represent the state of dependence relationships in a file system by placing
Queens on our boards, using their attack domains to represent file dependence
relationships. For any level l in our board, this level is used to solve a sub-problem
for the lth disk in our data center (numbered in rank major order, such that if the
disk is in rank r and file f the level which solves its independence constraints is
l = r∗M+f) the full attack domain of all queens on level l represents those disks
on which the lth disk depends. We call this lth disk for level l the principle disk
for that level. To represent these dependence relationships, however, we must
modify the attack domain definitions for each queen to match the dependence
relationships we must represent. We introduce three new queen types each with
a unique attack domain.

– Degenerate Queens - a degenerate queen is so named because it attacks
only a single square, that which it is occupying. Degenerate queens are used to
represent the disk being protected, and disks containing deduplicated blocks
upon which files on that disk depend. Degenerate queens are used to exclude
a square on a level from the solution space of new dynamic RAID groupings.
The attack domain of a degenerate queen is illustrated in Fig. 4a.

– Linear Queens - a linear queen’s attack domain is defined to include both
its own square and M − 2 squares on the board extending in a line from
the queen, potentially wrapping around the board as if it were a toroidal
board as discussed originally in the class of Modular n-Queens problems [9].
Linear queens can be used to represent existing RAID groups, or new dynamic
RAID groups with more traditional geometries. Two example attack domains
for linear queens are illustrated in Fig. 4b1.

1 While we allow linear queens to attack in any direction as a matter of completeness
of our variant n-Queens definition, we note that our method only makes use of linear
queens which attack along ranks towards squares in higher numbered files, wrapping
toroidally.
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(a) Example attack domain of a single de-
generate queen.

(b) Example attack domain of two linear
queens.

(c) Example attack domain of a single in-
direct queen.

Fig. 4. Example attack domains of all three queen types.

– Indirect Queens - the final type of queen we introduce is an indirect queen,
whose attack domain consists of its own square, and M − 2 other squares
on the board, each within a rank unique to the queen’s attack domain. The
attack domain of an indirect queen is illustrated in Fig. 4c.

In order to solve the problem of independent syndrome placement, and the
creation of new dynamic RAID groupings, we begin with a pre-defined board
based on the state of the data center, which contains a number of degenerate
and linear queens representing this system state, such as the example shown in
Fig. 5a. We then proceed to place Q new indirect queens on the board with each
indirect queen representing the storage location of a new pair of XOR and galois
field parity syndromes, and the attack domain of that queen representing the
independent disks to use to form a new dynamic RAID group associated with
those syndromes.
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(a) Example of initial constraints when pro-
tecting a block on disk 0 of RAID group 2
which has references to deduplicated blocks
on six other disks. Degenerate queens are
used to include the disks containing the ini-
tial and deduplicated blocks in the attack
domain, and a linear queen is used to in-
clude the RAID group in the attack domain.

(b) An example solution with two addi-
tional syndromes. Indirect Queens occupy
the spaces corresponding to the disks in
which the new syndromes will be stored,
their attack domains include all disks pro-
tected by the new syndrome.

Fig. 5. Representation of a single level of an 8× 8x64 board.

The initial placement of degenerate and linear queens is accomplished accord-
ing to the dependence relationships defined in Sect. 2. We begin by placing a
single degenerate queen on the square corresponding to our level and the disk
it solves for, di, i.e. for level l we place a degenerate queen at ( l

M , lmodM). If
we placed that degenerate queen in the last file of it’s rank we place a linear
queen at ( l

M , 0), otherwise we place it at ( l
M , (lmodM) + 1). This linear queen

accounts for the mutual RAID dependence relationships. We then place a single
degenerate queen on each square corresponding to some dj for which di → dj to
account for the data deduplication derived dependence relationships.

Once the initial board is fixed for each level, we attempt to solve for plac-
ing indirect queens representing new RAID groups such that neither the new
queens, nor their attack domains overlap with the existing attack domains on
the given level. An example solution with two additional syndrome storage loca-
tions (allowing up to four additional syndromes) is shown in Fig. 5b.

Our final modification to the traditional n-Queens problem is the addition
of a population constraint board. This board enforces a limit to the num-
ber of indirect queens placed on any level in a given column, constraining
the possible satisfying assignments which respect dependence relationships, and
possibly rules some columns out entirely when it comes to queen placement.
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0     1     1     0      2     2     1     0

0     0     0     0      0     0     0     0
5     4     3     1      1     5     5    10

2      2     2     2     2      2     2     2
0     3      3     0     1     1     0     1

1     1     2     3      3     5     5     0
1     1     1     2      1     1     1     1

0     0     1     1     2      2     1     1
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XXX

X X X
X X X X X X X X

A
B

C
D

E
F

G

H
0         1        2         3        4        5        6         7

IX

X

Fig. 6. Example of a Problem with a Population Constraint Board. This board is
unsatisfiable for any indirect queen placement due to the population constraints present
in rank C. While a placement may exist for level X, no placement can exist for level IX
as we need to place an indirect queen and allocate six attack domains, all on different
ranks. Note only two levels are shown here, when in a full problem a total of 64 levels
would exist.

Figure 6 illustrates an example of a population constraint board being used with
a 2x4x4 Latin board. These population constraints represent the overprovisioned
space on each disk that is available for additional reliability syndrome creation
as estimated by our predictive models.

While the less restrictive attack domains of our three new queen types would
seem to make the problem less difficult than traditional n-Queens, and more
equivalent to the trivial n-Rooks problem [4,29], the population constraints
board serves to complicate the problem of queen placement, especially as the
number of levels we must solve for grows polynomially. The population con-
straints board has the effect of creating attack domains in the z-axis when
enough queens are placed in a column. Figure 7 shows the relative difficulty of
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Fig. 7. Comparison of solution times for Z3 given the placement of Y queens on a
Y ×Y traditional n-Queens board and a Y 2 ×Y ×Y variant n-Queens board from our
problem.

solving this new variant n-Queens problem vs. traditional n-Queens, and high-
lights the additional complexity despite the more easily satisfied attack domains
of our variant queens. While this graph suggests that scalability is an issue,
we will address scalability concerns in Sect. 5 through a proposed compositional
approach.

4 Solving Virtual Disk Allocation with N -Queens

Given the encoding of our problem into n-Queens, to solve for the placement
of indirect queens representing new virtual disks holding unique syndromes we
define a set of constraints which maintain the necessary independence relation-
ships to ensure our new RAID groups provide additional reliability. In total we
can encapsulate these requirements in five constraints.

Constraint 1 (Standard n-Queens). No queen may be placed within the
attack domain of an existing queen.

As in standard n-Queens problems no indirect queen may be placed within
the attack domain of an existing queen. Since we define the attack domain of
an existing queen to also encompass the square in which the queen is placed, no
two queens may occupy the same square on a board. This ensures that we do
not attempt to allocate a new syndrome on a disk which the principle disk for
the level is dependent.
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Constraint 2 (Non-intersecting Attack Domain). The attack domains of
any two queens may not intersect.

In addition to the traditional n-Queens requirement that no queen may attack
another queen, we further constrain the problem with the rule that for a given
level l no queen may be placed such that the attack domain of that queen
intersects with the attack domain of an existing queen. Since the attack domains
of indirect queens represent independent disks which will be used to produce a
new RAID group, and the existing attack domain of all queens on a given level
represent all disks which the principle disk for that level depends on, this rule is
necessary to produce a new RAID group which will provide additional reliability.

Lemma 1. Constraints 1 and 2 ensure new syndromes are allocated in indepen-
dent space on the disk with respect to the block for which it will provide additional
reliability.

Proof. The set of dependencies for a given block already allocated on a system
are described in total by the current queens on the appropriate board, and their
attack domains. The block to be protected, and any deduplicated blocks will
be represented by degenerate queens, thus constrained by 1, the default RAID
grouping for the block in question will be represented by the attack domain of a
linear queen, thus constrained by 1, and any additional dynamic syndromes will
be represented by the attack domain of an indirect queen, also constrained by 1.

Constraint 3 (Indirect Queen Attack Domain). Each element of a given
indirect queen’s attack domain must be on a unique rank.

We assume that our system contains a number of initial RAID groupings
corresponding to each rank in our system. As such given two disks di and dj ,
if both are of the same rank it must be true that di ↔ dj . As such to form a
new RAID group of strictly independent disks, a single indirect queen must not
contain two square within the same rank in its attack domain.

Lemma 2. Constraint 3 guarantees that a new indirect queen will be an inde-
pendent grouping allowing XOR or Galois parity protection.

Proof. In order for independent XOR or Galois parity blocks to be computed
every element of a RAID grouping must be independent. If two attack domains
for an indirect queen are on the same rank, they will not be independent, as
they will already be involved in another parity group protecting each other.

Constraint 4 (Column Indirect Queen Population Limit). Each column
may be assigned a population limit pz ∈ N. The total number of all indirect
queens within that column must not exceed this limit.

As defined in Sect. 3 we include a population constraint board to represent
limits in available over-provisioned space in our data center. These population
limits restrict the placement of queens within a given column, creating depen-
dence between all levels of our Latin chess board.



Characterizing Data Dependence Constraints for Dynamic Reliability 223

Constraint 5 (Level Protection Requirement). For a given level l, the sum
of the number of all indirect queens on that level must be greater than or equal
to the protection requirement P .

As we want to ensure uniform protection of all queens, we constrain the
solutions for our system to those which have equal queens on all boards and find
the maximum P for which our problem is satisfiable.

4.1 Translation into Z3

In order to determine if a given data center state and desired protection level
is satisfiable, we utilized Z3 and encoded our problem in the form of variables
and uninterpreted functions forming an SMT problem. We first defined N2M2

integer variables, one for each square in our Latin n-queens board with domains
of {−1, 0, 1, 2} representing:

−1 : The attack domain of an indirect queen
0 : A degenerate queen, a linear queen, or the attack domain of a linear queen.
1 : An indirect queen.
2 : An empty square.

For the initial board setup we included an uninterpreted function fixing the
assignment of the corresponding variables to 0. Population limits were enforced
by the inclusion of uninterpreted functions which constrained the count of vari-
ables assigned a value of 1 in a given column to the limit for that column (fed as
input to the solver) using the If() function of Z3. A protection level of P was
enforced for each level by ensuring the count of variables assigned a value of 1
on a level was equal to P using the If() function of Z3. We ensured that each
indirect queen could be assigned an appropriate attack domain by ensuring the
count of variables assigned a value of −1 on a level was equal to (M −2)P using
the If() function of Z3, and that the count of variables assigned a value of −1
in a given rank for a given level was less than or equal to P . These last two unin-
terpreted functions also served to make solution more efficient by accounting for
symmetric and lump-able attack domains in a single solution [7].

5 Experimental Results and Validation

In order to validate our results we conducted experiments with random initial
system states for both population constraints boards, and data deduplication
constraints. All experiments were run using a single EC2 c4.large instance with
2 virtual CPUs and 3.75 GiB of RAM. We implemented our solver to print out
the resulting boards in a human readable format and hand checked the results,
also collecting performance statistics for the Z3 solutions.

Figure 8 along with Fig. 7 provide a summary of the results of our experiments.
We found a sharp satisfiability cliff accompanying the population constraint’s
board which corresponded to the probability of a rank having no available space.
This suggests an important observation to account for when moving forward with
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Fig. 8. Partial summary of experimental results.

a full implementation of software defined data centers, namely that balancing of
over-provisioned space can be critical when such space becomes rare and the data
center approaches capacity if the excess space is to be used to improve reliability.
This limit is approached even swifter for large systems in which many levels are
competing for the same population constraints within a rank.

We found the problem to be less sensitive to deduplication. While we eventu-
ally found a region of unsatisfiable problems at higher deduplication ratios, the
more random placement of deduplicated references ameliorated their constraints
on the solution space. It should also be noted that such constraints only became
an issue at very high levels of deduplication, suggesting that deduplication based
dependences are not as difficult to account for as might be expected.

The exponential growth in runtimes is somewhat concerning, as it seems to
limit this solution technique to smaller storage systems, which presents a problem
when confronted with the exponential growth of Big Data. Large-scale systems
could potentially take infeasible amounts of time to solve if solved directly. As
a consequence of this result we propose that larger systems be solved composi-
tionally. For instance, while a 160 TB system takes 74 s to solve, if the system
is blocked into two 80 TB systems by decomposing individual ranks a satisfying
solution for each system can be found within 2.5 s each, and can be solved in
parallel. The exponential improvements found through compositional solution,
coupled with the embarrassingly parallel nature of the SMT sub-problems cre-
ated by partitioning the system by rank provides a very scalable alternative to
attacking the entire problem at once. This method has the advantage of respect-
ing dependence relationships, as when decomposed into separate sub-problems
all relationships can be accounted for between sub-models in a trivial fashion
since their proposed solutions will include only those ranks within a given sub-
problem.

Since the population constraint board is known as part of the system state,
we can choose to sort each rank into one of S subproblems based on the rank
of the population constraint board associated with the rank of the Latin board.
The satisfiability of the subproblems, depending primarily on these population
constraints, can be maximized by sorting the ranks on the basis of the population
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constraints associated with their columns. Using such a solution we are able to
scale linearly with the size of our data center.

6 Conclusions

In this paper we have presented a novel formulation of the n-Queens problem
using a moudlar Latin board, non-traditional queen variants, and column-based
population constraints. This formulation serves as a translation of data depen-
dence constraints and the problem of virtual syndrome creation for software-
defined data structures into SMT allowing for efficient solution which allows for
improved reliability with no additional hardware in over-provisioned systems.
While our problem grows exponentially more difficult for larger storage systems,
we provide a scalable way to achieve similar levels of protection through rank-
wise decomposition of the problem space using population-constraint sorting into
embarrassingly parallel subproblems.

This new method will form the basis for a performable dynamic RAID allo-
cation system for use in large-scale storage systems serving cost-constrained
organizations, providing an intelligent software stack which will help to combat
the exponential growth of Big Data.

6.1 Future Work

Now that we have an efficient, scalable method for determining whether there
exists a dynamic reliability syndrome that satisfies its data dependence con-
straints, we can move onto looking at other interesting optimizations. Currently
we either generate a single strategy for additional syndrome allocation, or prove
that no such allocation exists. However, the option is now open for us to harness
more of the power of Z3 to query the solution space to optimize for secondary
considerations, such as geometries that we find more attractive. For example,
we may search for solutions with such features using the solution enumeration
capabilities of Z3 [14].

We plan to implement our solution technique in a hardware-based middle-
ware controller that monitors back-end data systems, and reshapes incoming file
traffic to build the proposed dynamic allocations of RAID groups in response
to predictions for overprovisioning. We can also envision an extension enabling
data storage system designers to query Z3 regarding hypothetical disk configu-
rations and data dependence constraints as they design a new storage system,
thus enabling them to optimize their designs with respect to the robustness/cost
tradeoff before purchasing any hardware.

Availability. We have made our implementation, all associated source code, and
data available under the terms of the University of Illinois/NCSA Open Source
License2 at our laboratory website http://trust.dataengineering.org/research/
nqueens/.

2 http://opensource.org/licenses/NCSA.

http://trust.dataengineering.org/research/nqueens/
http://trust.dataengineering.org/research/nqueens/
http://opensource.org/licenses/NCSA
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