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Abstract. An actuation fault in the aerobraking control system (ACS) took down
Iowa State’s Nova Somnium rocket during the 2019 Spaceport America Cup com-
petition, prematurely ending the team’s participation. The ACS engaged incor-
rectly before motor burnout, altering the rocket’s trajectory and leading to a dan-
gerous crash. The ability to detect this fault in real time on-board the ACS’s Ar-
duino microcontroller would have prevented an uncontrolled landing and rapid
unscheduled disassembly, which posed a major safety threat and ended a year’s
worth of effort by the 50-student team. Runtime verification (RV) specializes in
efficiently catching this type of scenario; the R2U2 RV engine uniquely fits in
the project’s resource constraints. We design specifications to detect ACS faults
and trigger the appropriate mitigations. We discuss specification development,
validation, coverage, and robustness against false positives. Experimental evalua-
tion on the real, recorded flight data demonstrates that running R2U2 on the Nova
Somnium ACS would have prevented this accident from occurring. We generalize
our results and outline our plans for integrating runtime verification into future
sounding rockets.
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1 Introduction
Every year, collegiate engineering teams from around the world compete in the Space-
port America Cup in New Mexico, where each team launches an experimental sounding
rocket designed and constructed by students [2]. The competition requires teams to ac-
curately predict their rocket’s apogee altitude, which many teams attempt by developing
an onboard aerobraking control system (ACS). An ACS must have the capacity to es-
timate apogee altitude during flight and alter drag to allow a rocket to reach, but not
exceed, a predefined target altitude. This goal poses a significant challenge to all teams,
and nearly 85% of teams failed to predict their apogee altitude within 10% of their ac-
tual apogee altitude in 2019 [2]. Iowa State University’s Cyclone Rocketry team devel-
oped an ACS that flew onboard their 2019 competition rocket Nova Somnium. During
flight, Nova Somnium’s ACS power supply reset during liftoff and it subsequently ac-
tivated earlier than intended, causing structural failure of the ACS mechanical system.
This fault led to an abrupt change in trajectory and an improper parachute deployment,
resulting in a dangerous crash landing.
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Competition rockets follow a yearly build cycle, emphasizing learning and rapid,
inexpensive development. As a result of competition parameters, time, and resource
limitations, an ACS must occupy a small physical space with tight memory constraints.
Sounding rockets often exceed the speed of sound, so on-board systems must make de-
cisions efficiently in real time. The experimental nature of student projects also creates
significant uncertainty, so an ACS needs to operate safely without complete knowledge
of the system dynamics or operating environment. We turn to runtime verification (RV)
to provide a layer of resilience to the ACS.

RV provides checks to ensure that cyber-physical systems are operating nominally
in real time. RV is a popular technique for sanity checking the behaviors of other au-
tonomous systems, like Unmanned Aircraft Systems (UAS), as they safely integrate
into the national air space [3]. Sounding rocket verification, however, has not yet been
investigated in literature. We present the first verification effort on sounding rockets.
We must detect and mitigate unexpected faults produced by the dynamic environment
in real time, on-board the resource-limited flight computer, without affecting the timing,
power, weight, or other tolerances of the rocket.

Three RV engines currently exist that can fly on real systems: Copilot, LOLA and
the Realizable, Responsive, Unobtrusive Unit (R2U2). Copilot is a stream-based, real-
time operating system that implements embedded monitors [11, 7, 5, 10]. This utility is
incompatible with the ACS software. LOLA is a stream-based specification language
that previously provided the necessary level of formalization and expressibility for this
project [18], but the computational limits of Nova Somnium’s ACS are ill-matched for
this tool and LOLA’s current restriction to past-time specification presents a significant
barrier to use. R2U2 was developed to monitor expressive properties of systems in real-
time, with little overhead and significant resource constraints [19, 20, 9, 17, 6, 1]. For
this reason, R2U2 is a viable option for integrating RV onto sounding rocket systems.

We contribute (1) formal rocket specifications, (2) successful RV using R2U2 on the
real ACS dataset, and (3) specification analysis for future studies. The remainder of this
paper is organized as follows. Section 2 outlines the ACS on the Nova Somnium rocket.
Section 3 illustrates our approach to integrating RV onto the ACS. Section 4 details
our specification development and debugging, and outlines strategies that generalize
to other projects. We demonstrate how these specifications detect multiple faults while
staying robust to false positives using the real rocket dataset in Section 5. In Section 6,
we conclude by exploring plans for future work.

2 System Description

Nova Somnium’s ACS includes an Arduino-based central processing unit (CPU) and
two sensors: an Inertial Measurement Unit (IMU) and a barometer (BAR). These sen-
sors recognize four possible states of the rocket’s mission: Launch Pad (0), Boost (1),
Coast (2), and Descent (3). Figure 1 shows the mission states and Nova Somnium’s
ACS. The ACS only allows brake actuation while in the Coast state, during which the
ACS continually estimates the apogee altitude from the rocket’s current altitude, vertical
velocity, dynamic pressure, and geometry. The ACS compares this estimate to the target
altitude, actuating the brakes whenever the estimate exceeds the target. The signals used
by the ACS during runtime appear in Table 1.
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Table 1: Output signals used during ACS operation, along with each signal’s source, a
description, and its units.

Signal Source Description Units
Acc{X,Y,Z} IMU Acceleration vector of the rocket m/s2

AccV IMU Vertical acceleration of the rocket m/s2

Alt BAR Altitude above Mean Sea Level (MSL) m
Pres BAR Atmospheric pressure Pa
Temp BAR Ambient air temperature ◦C

Act CPU Actuation status of the ACS Boolean
Time CPU Computer clock-time since startup ms
State CPU Current mission state of the rocket Integer
VelV CPU Vertical velocity of the rocket derived from BAR m/s

Fig. 1: Left: Rocket mission states: Launch Pad (0), Boost (1), Coast (2), Descent (3).
Right Top: Model of Nova Somnium’s ACS, Right Bottom: the physical ACS.

3 Approach
R2U2 integrates easily with the Arduino C++ framework of the ACS and passes its
verdicts to the ACS, allowing us to disable the ACS if specifications are violated [17].
Since the ACS is a reactive system with a well-defined operational timeline, we need
a specification logic like Linear Temporal Logic (LTL) but with finite bounds corre-
sponding to the mission phases. In analyzing Nova Somnium’s flight data, we identified
deviations in the time steps between measurements. The rocket data indicated that time
steps as small as ∼ 22 ms and as large as ∼ 86 ms occurred, despite a predefined time
step of 50 ms. To account for this variable time step issue, we need to encode our re-
quirements generically with integer-bounded time steps that can easily map to the real
data. Mission-time Linear Temporal Logic (MLTL) was designed for this purpose [13,
8]; it adds finite, integer-bounded intervals to each of the temporal operators in LTL.
MLTL has been used in many industrial projects [4, 13, 14, 19, 21, 20, 9, 6, 1], and since
2018 has been an official logic of the RV Benchmark Competition [12, 16].

4 Runtime Specification Development
We construct our requirements in English starting from an a priori known mission pa-
rameters. This includes constants known before launch, such as motor burn time; ideal
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time-varying parameters obtained from flight simulations, such as expected acceler-
ation; and the average ACS refresh rate. We then consider the temporal nature of a
nominal rocket launch. For example, the rocket should experience each mission state in
order and stay in each state for a predictable time duration. From each of the English
requirements, we derive a specification written in MLTL.

As we develop specifications, we track signal coverage to help capture as many
sensor constraints as possible. To achieve coverage, we follow a similar methodology
to [15, 1], writing at least one specification involving each signal used by the ACS. We
also organize our specifications into three of the categories defined in [15] and used in
[1]: operating ranges (OR), rates of change (RC), and control sequences (CS). Adding
specifications for the additional categories could further delineate errors to support more
expansive mitigation protocols in future work.

We practice specification validation throughout the development phase, as specifica-
tion creation is an iterative process [15]. We first validate the correctness of the Boolean
atomics by generating atomic traces corresponding to ACS runs, checking manually that
each atomic accurately represents the ACS data. We then stream the atomic traces into
R2U2 and plot the specification verdict at each time step to analytically determine if the
specification has correctly captured the requirement. As we test specifications, we can
trace errors back to the MLTL formulation, Boolean definition, or English requirement.

Following specification validation and debugging, we must craft specifications that
are robust to insignificant faults, like sensor data noise, to prevent false-positive alerts
from the RV engine. We could handle this in part by tweaking Boolean atomic defini-
tions. However, MLTL offers powerful temporal filtering that makes such small-fault
tolerance easy to alter, as demonstrated in [1]. We use this to adjust the acceptable time
frame we expect something to happen within.

For example, consider CS7 (shown in Table 3): “When the rocket enters the Boost
state, the rocket shall remain in the Boost state until at least 5.7 seconds have passed
(90% of theoretical motor burntime, about 114 timesteps), but no longer than 6.5 sec-
onds (about 130 timesteps).” Adjusting the bounds of the U operator for specification
CS7 specifies the time frame in which we expect the rocket to transition from the Boost
state to the Coast state, while the minimum time required before a state transition occurs
is captured in the Boolean definition of 90%OfBurnTime: timeInState1 > 113 timesteps.
Flight simulation predicts boost state duration, but many environmental factors can af-
fect the final outcome, making the fine-tunable fault tolerance provided by MLTL es-
sential to monitoring an ACS or any real system. Table 2 summarizes our specification
development results.

5 Results
We designed 19 MLTL runtime specifications for Nova Somnium’s ACS, shown in Table
3. The total memory for R2U2 monitoring all 19 specifications in parallel was ∼400
kB of memory, which would fit on-board the ACS; we could further reduce memory by
employing optimizations from [6] or down-selecting specifications to monitor. To better
understand how the specifications are encoded into observation trees for R2U2, see [19,
20, 17]. To demonstrate the efficacy of our approach, we examine two specifications and
the resulting R2U2 RV output from the ACS data obtained during the Nova Somnium
launch. Figure 2 shows that the state transition from Boost to Coast occurs far too
quickly, entering the Coast state after just 350 ms. The incorrectness of the vertical
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Table 2: Specification development summary. Development time estimates account for
the time spent debugging and validating specifications. The count of failed specifica-
tions refers to the number of specifications that flagged an error when run with R2U2
for the Nova Somnium ACS launch data set.

MLTL Specification
Category Count Estimated

Development Time
Count of Failed
Specifications

All specifications 19 50 person-hours 6
OR specifications 6 14 person-hours 4
RC specifications 6 15 person-hours 0
CS specifications 7 21 person-hours 2

Table 3: MLTL runtime specifications. A detailed explanation of each specification,
including the atomic definitions and temporal operator time bounds, can be found at
http://temporallogic.org/research/NFM21/. An “X” in the “Err” col-
umn denotes the specification failed at least once, identifying an error. When choosing
temporal operator syntax, we use the operators most similar to the English require-
ments; for example, though ¬�[a,b]¬p ≡ ♦[a,b]p, we interchange these forms to im-
prove readability.

ID Err MLTL Specification
OR1 3 (altBelowMax ∧ (act→ altAboveMin))
OR2 7 (actTrue→ (timeBelowMax ∧ timeAboveMin))
OR3 7 (velV BelowMax)
OR4 7 ((inLaunchPadState∨inBoostState∨inCoastState)→ velV Above0)
OR5 3 (inBoostState→ accV BelowBoostMax)
OR6 7 (inCoastState→ accV BelowCoastMax)

RC1 3 ¬�[0,2]¬(absV alOfTempMinusPreviousTempBelowThreshold)
RC2 3 ¬�[0,2]¬(absV alOfPresMinusPreviousPresBelowThreshold)
RC3 3 (absV alOfPresMinusPrevPresBelowMax)
RC4 3 ¬�[0,2]¬(timeMinusPreviousT imeBelowThreshold)
RC5 3 ¬�[0,2]¬(accV EqualsPreviousAccV )
RC6 3 ¬�[0,2]¬(velV EqualsPreviousV elV )

CS1 3 (inBoostState→ ♦[0,140]inCoastState)
CS2 3 (inCoastState→ ♦[0,800]inDescentState)
CS3 7 ((accAngleAboveThreshold ∧ inBoostState)→ ♦[0,10]inCoastState)
CS4 3 (inBoostState→ (inBoostState U[0,130]AccV Below0))
CS5 3 (actTrue→ ♦[0,5]accMagnitudeAboveThreshold)
CS6 3 ((inBoostState ∧ velV AboveThreshold)→ ♦[0,126]accV Above0)
CS7 7 (inBoostState→ (inBoostState U[0,114]90%OfBurnT ime))

velocity measurements owing to the mid-launch reset appears in Figure 3. Figures 2
and 3 both demonstrate that these specifications successfully identified an error before
the first actuation command. Had RV been embedded into the ACS with the authority to
prevent actuation, Nova Somnium would have stayed on course and simply overshot its
target apogee altitude rather than veering abruptly and creating a serious safety hazard.

6 Conclusion
Our MLTL specifications with R2U2’s RV engine successfully identified the faults that
Nova Somnium’s ACS experienced during the 2019 Spaceport America Cup competi-
tion. Detection of these faults in real time through embedded RV would have triggered
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a predetermined mitigation action, such as disabling the ACS prior to the dangerous
premature actuation. The ability to monitor a rocket’s on-board systems autonomously
during flight to prevent failures applies to other sounding rockets, owing to the wide
variety of autonomous systems on-board. In future work, the R2U2 tool can be embed-
ded into a new competition rocket’s ACS with our specifications to provide real-time
reasoning of the system and monitor for critical faults. We will author additional speci-
fications to more precisely identify errors and allow for advanced mitigation protocols.
We also look to map R2U2 outputs to a wider range of mitigation strategies.

(a) Rocket State (from recorded flight data)

(b) (inCoastState→ (inCoastState U[0,130] 90%OfBurnTime))

Fig. 2: R2U2 monitoring for specification CS7. (a) The state of the rocket versus time
throughout the flight. (b) RV output from the R2U2 tool, correctly identifying a fault
when the ACS enters the Coast state before 90% of motor burnout, which for Nova
Somnium takes approximately 5.7 seconds after ignition, or about 114 time steps. The
U upper bound is set to 130 time steps (∼6.5 seconds) to allow for minor deviations in
motor performance. A dashed red line indicates when the ACS was actuated.

(a) Vertical Velocity (from recorded flight data)

(b) ((inLaunchpadState ‖ inBoostState ‖ inCoastState)→ velVAbove0)

Fig. 3: R2U2 monitoring for specification OR4. (a) The rocket’s vertical velocity versus
time throughout the flight. (b) RV output from the R2U2 tool, correctly identifying
multiple faults indicating vertical velocity measurements are negative before the descent
state. A dashed red line indicates when the ACS was actuated.
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