
R2U2 Version 3.0: Re-Imagining a Toolchain
for Specification, Resource Estimation,
and Optimized Observer Generation
for Runtime Verification in Hardware

and Software

Chris Johannsen1(B), Phillip Jones1, Brian Kempa1, Kristin Yvonne Rozier1,
and Pei Zhang2

1 Iowa State University, Ames, USA
{cgjohann,phjones,bckempa,

kyrozier}@iastate.edu
2 Google LLC, Sunnyvale, USA

Abstract. R2U2 is a modular runtime verification framework capable of mon-
itoring sets of specifications in real time and in resource-constrained environ-
ments. Such environments demand that a runtime monitor be fast, easily integrat-
able, accessible to domain experts, and have predictable resource requirements.
Version 3.0 adds new features to R2U2 and its associated suite of tools that meet
these needs including a new front-end compiler that accepts a custom specifi-
cation language, a GUI for resource estimation, and improvements to R2U2’s
internal architecture.

1 Tool Overview

R2U2 (Realizable Responsive Unobtrusive Unit) is a modular framework for hard-
ware (FPGA) and software (C and C++) real-time runtime verification (RV). R2U2
runs online, during system execution, with minimal overhead. (It also runs offline, over
simulated data streasms or recorded data logs.) R2U2 is stream-based; given a runtime
requirement ϕ and an input computation π of sensor and software values at each times-
tamp i, R2U2 returns the verdict (true or false) for all i as to whether π, i |= ϕ.
We call this output stream an execution sequence [34]; it is a stream of two-tuples
〈verdict, time〉 for every time i. R2U2 encodes specifications as observers (a set of
which we call a configuration) via an optimized algorithm with published proofs of
correctness, time, and space [18,20,34].

Figure 1 depicts a standard R2U2 workflow. To integrate R2U2 into a target system,
we first need a validated set of runtime requirements. Given the system’s resource con-
straints, the Configuration Compiler for Property Organization (C2PO) creates an opti-
mized encoding of the input set of requirements as an R2U2 configuration. Users can

This work was funded by NSF CAREER Award CNS-1552934, NASA-ECF NNX16AR57G,
NASA Cooperative Agreement Grant #80NSSC21M0121, and NSF:CPS Award 2038903.
Thanks to the NASA Lunar Gateway Vehicle System Manager team for novel feature requests.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 483–497, 2023.
https://doi.org/10.1007/978-3-031-37709-9_23

https://doi.org/10.5281/zenodo.7889284
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_23&domain=pdf
https://doi.org/10.1007/978-3-031-37709-9_23

484 C. Johannsen et al.

Fig. 1. Workflow for verifying a specification using R2U2. Red shaded boxes denote runtime
components and blue shaded boxes denote design-time components. Note that for validation, the
runtime components can run offline, e.g., by replacing the data stream with a log file of simulated
data. Users formalize their system requirements as MLTL formulas within a C2PO specification,
use C2PO to generate an R2U2 configuration, then monitor the verdicts R2U2 outputs based on
the configuration and data stream. (Color figure online)

swap configurations monitored by R2U2 at runtime, during system execution, based on
system state, mission phase, or to upgrade the specification version – all without recom-
piling and redeploying the R2U2 engine, a key feature for systems that require onerous
code change certifications, or e.g., systems that need to be launched into space and then
dynamically updated as their hardware degrades.

R2U2 fills the unique gap in the RV community described by its name [39]:

REALIZABILITY R2U2 analyzes generic, re-usable specifications in Mission-Time
Linear Temporal Logic (MLTL) [20,34], a variant of LTL with closed integer-
bounded intervals on the temporal operators. MLTL excels at capturing require-
ments conceptualized as timelines, as is common in aerospace operational concepts,
e.g., [1,11,45]. At its core, R2U2 specifications combine either a future-time or
past-time MLTL formula with simple signal comparators [34]. New optional exten-
sions provide additional features, such as simple set-level reasoning [5]. R2U2’s
hardware implementation, written in VHDL, avoids overburdening limited com-
puting resources by utilizing Field Programmable Gate Arrays (FPGAs) to mon-
itor in parallel with the system under absolute timing guarantees. R2U2’s two
software implementations avoid hardware integration and software instrumentation
challenges at the cost of (minimal) compute resources on the host system and are
designed to be suitable for different environments. The C version forgoes mem-
ory allocation and bounds checking to provide fast deterministic results for real-
time controllers under stringent certifiability criteria; alternatively, the C++ ver-
sion makes full use of dynamic memory, templates, and runtime checks for max-
imum flexibility without monitor tuning. Additionally, the implementations differ
significantly in architecture to provide fault independence. The three monitor imple-
mentations enable on-board (embedded) and on-ground execution, integration with
multiple human-machine interaction paradigms, cross-validation, or triple modular
redundancy voting strategies to increase system trust.

RESPONSIVENESS R2U2 provides two levels of responsiveness. At a system level,
runtime reconfiguration of the monitor without a lengthy re-compilation (and re-
certification) process keeps R2U2 responsive to the system’s needs even as the
mission, platform, or requirements evolve. At a specification level, R2U2’s asyn-
chronous (event-triggered) observers provably report both true and false ver-
dicts (rather than only reporting property violations) in the first timestamp where

R2U2 Version 3.0 485

there is sufficient information to evaluate π, i |= ϕ, thus monitoring integrity,
safety, and security requirements in real-time. Since the monitor’s response time
is a function of the specification and known a priori, higher-level autonomous sys-
tem health and decision-making controllers can rely on R2U2 verdicts to provide a
tight bound on mitigation triggering or other reactive behaviors.

UNOBTRUSIVENESS R2U2’s multi-architecture, multi-platform design enables effec-
tive runtime verification while respecting crucial unobtrusiveness properties of
embedded systems, including functionality (no change in behavior), certifiability
(bounded time and memory under safety cases), timing (no interference with timing
guarantees), and tolerances (respect constraints on size, weight, power, bandwidth,
and overhead). R2U2 obeys unobtrusiveness constraints, provably fitting into tight
resource limits and operational constraints frequently encountered in space mis-
sions. It can operate without code instrumentation or insight into black-box sub-
components such as ITAR, restricted, or closed-source modules [29].

User Base. After an extensive survey of all currently-available verification tools,
NASA’s Lunar Gateway Vehicle SystemManager (VSM) team selected R2U2 for oper-
ational verification [8–10]; R2U2 is currently operating in the NASA core Flight Sys-
tem/core Flight Executive (cFS/cFE) [28] VSM environment. R2U2 is embedded in
the space left over on the FPGA controlling NASA’s Robonaut2’s knee to provide real-
time fault disambiguation [18], interfacing via the Robot Operating System (ROS) [31].
R2U2 is running on a UAS Traffic Management (UTM) system [5], where it recently
detected a flight-plan timing fault. JAXA is running R2U2 on a 2021 autonomous satel-
lite mission with a requirement for a provable memory bound of 200KB [30]. R2U2
recently verified a CubeSat communications system [24], an open-source UAS [16], a
sounding rocket [15], and a high-altitude balloon [23]. The CySat-I satellite uses R2U2
for autonomous fault recovery [2]. In the recent past, R2U2 was used in NASA’s Auton-
omy Operating System (AOS) for UAS [22] (where it flew on NASA’s S1000 octocopter
[21]), the NASA Swift UAS [13,34,36,43], and the NASA DragonEye UAS [41,44].
R2U2 aided in NASA embedded system battery prognostics [42] and a case study on
small satellites and landers [35]. R2U2 has also proven useful for monitoring and diag-
nosis of security threats on-board NASA UAS like the DragonEye [27,40]. R2U2 was
cataloged by the user community in a 2018 taxonomy of RV tools [12,39], and appeared
in a 2020 Institute of Information Security (ETH Zürich, Switzerland) case study [33].
R2U2 is open-source, dual licensed under MIT1 and Apache-2.0.2

2 Compiler and Specification Language

Specification is a notoriously difficult aspect of RV [37]; verification results are only
meaningful if the input specifications are correct and complete with respect to the sys-
tem requirements. An RV engine is only usable if system engineers can validate that it
monitors its given requirements as they expect, so they can clearly explain when and
why different RV verdicts occur. In consultation with outside groups using R2U2 on

1 https://choosealicense.com/licenses/mit/.
2 https://choosealicense.com/licenses/apache-2.0/.

https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/apache-2.0/

486 C. Johannsen et al.

Table 1. Overview of changes to the R2U2 specification syntax for a basic temperature limit
requirement, where Temp is located at index 0 of the input signal vector. This is not an exhaustive
comparison but covers directly equivalent features, while Fig. 2 and the remainder of Sect. 2 detail
new capabilities.

Feature Previous Syntax [39] C2PO Syntax

Declare Signal Temp = 0;
Fix name to signal index

INPUT
Temp: float;

Declare name/type, signal index handled
separately

Define Macro N/A DEFINE
Temp_Limit = 97;

Improves readability and maintenance

Define Struct N/A STRUCT
Alarm = { T: float; };

Enables data organization

Atomic Checker OVERTEMP = float(Temp) >
97;

In-lined constants, signal type determined
by function name

ATOMIC
OVERTEMP = Temp >
Temp_Limit;

All declared names available, uses known
signal types

MLTL Formula G[0,3] !OVERTEMP; FTSPEC
G[0,3] !OVERTEMP;

Requires temporal tense declared
(FTSPEC or PTSPEC)

real systems [8,14,30], we developed a new specification language and an accompany-
ing formula-set compiler. The language’s and compiler’s features make specifications
easier to read and write, improving user productivity and easing validation to address
the challenges of specification in RV.

2.1 New Specification Language

Previous versions of R2U2 used a specification language derived from the implemen-
tation of the hardware runtime engine. While sufficiently expressive for the creation
of R2U2 configurations, it utilized a restricted syntax that supported only basic MLTL
operators and single-operator expressions over non-Boolean data types. Writing spec-
ifications that are transparent and easy to validate could be difficult without in-depth
knowledge of R2U2’s architecture [17].

The new SMV-inspired [26] specification language allows users the option to write
specifications more naturally with support for compound expressions over complex data
types including sets and C-like structs as well as sections for defining structs, variables,
macros, and MLTL formulas. C2PO supports Boolean, struct, and parametric set types

R2U2 Version 3.0 487

Fig. 2. Sample C2PO specification file using structs (lines 2–3, 12–13), sets (lines 3, 15–16), and
set aggregation operators (lines 22–23). The specification on lines 19–20 captures the English
requirement, “The active times for rq0 and rq1 shall differ by no more than 10.0 s,” and the
specification on lines 22–26 captures the English requirement, “For each request r of each arbiter
in ArbSet, r’s status shall be GRANT or REJECT within the next 5 s and until then shall be
WAITING.”

with configurable integer and floating point types. To run R2U2 in software, users select
a C standard type for each of the integer and float types e.g., an unsigned 16-bit inte-
ger (uint16_t) and double-precision floating point (double). If targeting hardware
(FPGA implementation), users can configure integer and float types to a bit-width sup-
ported by the target system. Table 1 presents a comparison between the old [39] and
new syntaxes and Fig. 2 presents a sample file for monitoring a request-handling system.

To create an R2U2 configuration, C2PO generates an Abstract Syntax Tree (AST)
representation of the input, performs type checking, applies optimizations and rewriting
rules, then outputs the corresponding R2U2 configuration. R2U2 does not use automata
to encode temporal logic observers (as reported erroneously elsewhere [12]); instead
C2PO traverses the AST to produce assembly-like imperative evaluation instructions
for the R2U2 monitor to executed at runtime.

In order to meet the demands of a wide range of systems, R2U2 Version 3.0 includes
many optional features that are specific to one of the three implementations that can
be enabled during system integration. For example, the Booleanizer module computes
arbitrary non-Boolean expressions in the C implementation of R2U2, but this feature is
not an option in the C++ or hardware implementations. C2PO allows users to enable
or disable such features according to the capabilities of their target systems and chosen
R2U2 implementation.

488 C. Johannsen et al.

2.2 Assume-Guarantee Contract Support

Assume Guarantee Contracts (AGCs) provide a template for structuring and validat-
ing complex requirements in aerospace operational concepts [3]. AGCs feature a guard
or trigger clause called the “assumption” and a system invariant called the “guaran-
tee;” they have been used to structure both English and formal (e.g., temporal logic)
requirements by projects including the NASA Lunar Gateway Vehicle System Man-
ager [10]. R2U2 V3.0 now directly supports AGCs with an input syntax for expressing
AGCs in C2PO and an output format for R2U2 that provides granular interpretation of
verdicts, as presented in [17]. The input syntax for declaring an AGC is assumption
=> guarantee where the semantics for this logical implication provides three dis-

tinct cases: the AGC is “inactive” if the assumption is false, “true” if both the assump-
tion and guarantee are true, and “false” otherwise. When the optional AGC feature is
enabled, R2U2 produces three-valued verdicts to represent the state of the AGCs in a
clear format; otherwise R2U2 interprets logical implications in the standard way (where
false → true results in the verdict true rather than inactive).

2.3 Set Aggregation

A common pattern in real-world specifications applies an identical formula to vari-
ous input signals, such as testing all temperature sensors for an overheat condition. A
naive encoding of these specifications in MLTL can be excessively large to the point
of obscuring intent while providing ample opportunity for copy-paste errors, typos, or
incomplete updates to variables – all of which are difficult for humans to spot dur-
ing validation. C2PO mitigates this issue by supporting set aggregation operators that
compactly encode these expressions as sets of streams with a predicate applied to each
element [14].

To illustrate, consider the specification in Fig. 2. The direct encoding of this speci-
fication without the “foreach” operator is

(rq0.status == W) U[0,5] (rq0.status == G || rq0.status == R) &&
(rq1.status == W) U[0,5] (rq1.status == G || rq1.status == R) &&
(rq2.status == W) U[0,5] (rq2.status == G || rq2.status == R) &&
(rq3.status == W) U[0,5] (rq3.status == G || rq3.status == R)

Contrast this with the more compact encoding using the “foreach” operator on lines 22−
26 in Fig. 2. The latter retains the intent of the English-level requirement while being
semantically equivalent to the direct encoding. This concise representation both eases
validation by improving readability and reduces the potential for errors by avoiding
replicated values that require simultaneous updates.

2.4 Common Subexpression Elimination

C2PO uses an AST as the intermediate representation of its input and can therefore
use optimization techniques common in compiler design such as Common Subexpres-
sion Elimination (CSE) [6]. Similarly to applying the isomorphism elimination rule for
Binary Decision Trees [4], Common Subexpression Elimination (CSE) prunes all but

R2U2 Version 3.0 489

one instance of any identical AST subtrees, reusing the result from that subtree for
monitoring multiple requirements without wasting memory and execution time by rep-
resenting it redundantly. Analysis of CSE on randomly-generated MLTL requirements
resulted in a speed-up of 37% and required 4.3% less memory [18]. We expect larger
savings in human-authored requirement specifications, however, due to reuse of both
common specification patterns and structures in the underlying system. For example,
a non-trivial subexpression might represent a system’s confidence in its navigational
fix and many specifications might depend on the navigation state, thus re-using this
subexpression.

3 Resource Estimation GUI

As R2U2’s user base expands, so does the variance in the domain expertise of these
specification authors; R2U2 V3.0 therefore enables resource-aware requirements spec-
ification by users without experience with the performance trade-offs of syntactically
different but semantically equivalent temporal logic encodings. The R2U2 Configura-
tion Explorer is a web application that provides visual feedback from C2PO about the
resource costs of specifications, e.g., in the form of MLTL formulas; see Fig. 3. With
a short feedback loop on critical parameters like execution time, memory, and relative
formula size, all a user needs to understand is what resources are available on their
target system (not R2U2 itself) to write performant specifications that fit the available
resources.

Fig. 3. R2U2 Configuration Explorer web application: 1) C2PO specification input; 2) C2PO
options; 3) C2PO output; 4) AST visualization; 5) AST node data; 6) R2U2 instruction; 7) C
engine speed and memory calculator; 8) FPGA speed and size calculator; 9) FPGA design size
vs maximum timestamp value.

490 C. Johannsen et al.

3.1 C2PO Feedback

Feedback from C2PO (elements 1–6 in Fig. 3) allows users to visualize the intermediate
representation of a given input specification as well as the effects of optimizations and
options on their final R2U2 configurations. Properties such as the memory required to
represent specifications with differently-sized temporal intervals, or syntactically dif-
ferent but functionally similar checks, can be unintuitive for users to compute on the
fly. The AST visualization provides transparency into this process for users unfamiliar
with R2U2’s implementation via an interactive web-based interface suited to experi-
mentation with different variations of a possible specification.

3.2 Software Resource Calculator

The software resource calculator (element 7 in Fig. 3) provides users of the R2U2 soft-
ware implementations with an estimate of the time and memory required to evaluate
one time step of a specification in the worst case.

Software Worst-Case Execution Time. The highly optimized nature of R2U2’s soft-
ware implementations makes runtime performance highly dependent on the target plat-
form’s architecture, C/C++ compiler version, and make environment factors; e.g., the
length of the current working directory name can impact cache alignment. We use a
simplified computing model to provide an estimation of the computing speed based on
the number of CPU cycles required for each operation on the target platform. Users can
edit these clock cycle values in the GUI, e.g., to test for platform-specific latencies. The
estimated worst-case execution time (WCET) in software Wsw of an AST node g is:

Wsw(g) =
∑

c∈Cg

(Wsw(c)) + Cycles(g.type) (1)

where Cg are the children nodes of g and Cycles is a dictionary mapping AST node
types to a corresponding number of clock cycles. For instance, Cycles(∧) = 10 cycles
by default.

Software Memory Requirements. R2U2 uses Shared Connection Queues (SCQs) to
store verdict-timestamp pairs for each node in the AST. SCQs are single-writer, many-
reader circular buffers that buffer the results of dependent temporal expressions that
might not be evaluated at the same timestamp. The total SCQ size for a specification
is the total number of SCQ slots required by the specification multiplied by the size of
one slot. The required number of SCQ slots for a node g is:

size(g.Queue) = max(max{s.wpd | ∀s ∈ Sg} − g.bpd, 0) + 1 (2)

where g.Queue is the output SCQ of g, s.wpd is the worst-case propagation delay of
node s, s.bpd is the best-case propagation delay of node s, and Sg is the set of sibling
nodes of g. The propagation delays of a node represent the minimum and maximum

R2U2 Version 3.0 491

number of time steps needed to evaluate the node and are defined recursively in Defini-
tion 4 of [18]. Intuitively, a node requires enough memory such that its results will not
be overwritten before they are consumed by a parent node. The total SCQ memory of
an AST is the sum of the sizes of SCQs of all nodes in the AST.

SCQ memory is an estimation of the actual total memory usage, but is typically the
largest and most constraining memory type, e.g., as compared to instruction or pointer
memory. The R2U2 C implementation statically fixes all memory sizes in advance to
avoid dynamic allocation, so the SCQ sizing feedback is useful for: (1) selecting an
initial size based on expected usage and; (2) verifying a configuration will fit on a
deployed monitor with a fixed SCQ limit.

3.3 Hardware Resource Calculator

The hardware resource calculator (elements 8 − 9 in Fig. 3) provides estimations for
hardware WCET (Whw), total SCQmemory slots, and a graph for visualizing estimated
FPGA resource requirements - Look-Up Tables (LUT) and Block RAMs (BRAM).
Required resources depend on the type of FPGA architecture. The GUI accepts clock
rate, LUT-type, timestamp length, and node sizing as parameters to better match the
estimate to a target platform. This approach was validated on Virtex-5 and Zynq7000
FPGA platforms as well as the ACTEL ProASIC3L used for Robonaut2 in [18].

HardwareWorst-Case Execution Time. The GUI computes the estimatedWhw using
a more precise method than in Sect. 3.2 by taking into account SCQ usage during execu-
tion. The R2U2 hardware implementation’s estimated worst-case execution time (Whw)
of an AST node g is:

Whw(g) =
∑

c∈Cg

(Whw(c)) + Latencyinit(g.type)

+ Latencyeval(g.type) ∗
∑

c∈Cg

(size(c.Queue))
(3)

where Latencyinit, Latencyeval are dictionaries mapping AST node types to micro-
second latencies corresponding to the initial and evaluation times of the node respec-
tively. The multiplication accounts for evaluation of each buffered input from the child
node, up to the queue size in the worst case.

Hardware Memory Requirements. The hardware resource calculator provides the
explicit number of SCQ slots required for the collection of specifications in the specifi-
cation set (aka configuration) using Formula 2 and summing sizes required for all AST
nodes.

FPGAs use BRAMs to implement an R2U2 monitor’s SCQ memory, where the size
and number of ports of the BRAMs limit the queue depth of the BRAMs. To compute
the required number of BRAMs, let d be the total SCQ size, w be the bit width of each
verdict-timestamp pair, wmax be the widest bit width the BRAM can accommodate,

492 C. Johannsen et al.

and D(w) be the maximum queue depth of a BRAM with verdict-timestamp pair bit
width w. The required number of cascaded BRAMs is:

NBRAM (w, d) = 	 d

D(wmax)

 ∗ mod(w,wmax) + 	 d

D(rem(w,wmax))

 (4)

Hardware LUT Requirements. Each R2U2 operator requires a constant number of
comparator and adder/subtractor LUTs, configured by the user in the GUI. The GUI
accounts for scaling based on the LUT type and uses the bit width of each verdict-
timestamp pair w to estimate total LUT usage. The total number of required comparator
LUTs (Ncmp) and adder/subtractor LUTs (Nadd) are:

Ncmp(w) =

⎧
⎪⎨

⎪⎩

4 ∗ w if LUT-3

2 ∗ w if LUT-4

w if LUT-6

Nadd(w) =

{
2 ∗ w if LUT-3 or LUT-4

w if LUT-6

4 Runtime Engine Improvements

To better serve mission-critical systems that must satisfy strict flight certification
requirements (such as NASA’s VSM [8–10]), we have made a number of improvements
to the internal architecture of the C version of R2U2 that provide memory assurances
and flexibility as well as extended computational abilities. Figure 4 depicts this updated
architecture.

Static Memory Arenas. The R2U2 V3.0C version uses only statically-allocated mem-
ory. This avoids the many pitfalls of allocating memory (slow allocator calls, fragmenta-
tion, leaks, out-of-memory errors, etc.) and guarantees the amount of memory required
for the entire execution of R2U2 up front. Additionally, many mission-critical systems
either do not have or do not permit dynamic memory allocation, e.g., to satisfy require-
ments for flight certification [32]. R2U2 now runs unmodified on these platforms as
well as traditional systems.

Each type of memory (yellow boxes of Fig. 4) has a predefined “arena” with a max-
imum size set during integration of the monitor with the target platform. When a user
loads an R2U2 configuration, R2U2 fills the slots of these arenas in sequence until the
arena is full.

Monitor Type Parameterization. Complimentary to the switch to static memory, the
internals of the reasoning engine are now fully parameterized. A single header file
allows users to adjust maximum values, bit widths, and even internal types. Proper
tuning has performance benefits, but crucially allows users to fit R2U2 to use the exact
amounts of resources available on a target system. For example, limiting the size of
the gaps between timestamps, e.g., in cases where the specification will be either reset
frequently or evaluated infrequently, allows more SCQs to fit in the same amount of
memory permitting larger formula sets with functionally similar behavior.

R2U2 Version 3.0 493

Fig. 4. Internal architecture of an R2U2 monitor. Orange boxes are streams of data, yellow boxes
are memory arenas, and blue boxes are modules. Arrows entering and exiting blue boxes denote
read and write relationships respectively. The red arrows denote relationships that are only active
upon startup i.e., when R2U2 populates instruction memory and configures SCQ memory. (Color
figure online)

Arbitrary Data Flow. R2U2 initially worked as a stack of engines, at each timestamp
passing results from the Atomic Checker (AT) to the Temporal Logic engine (TL), then
passing the TL verdicts through the Bayesian Network (BN) layer to produce that time-
stamp’s verdict [34]. Now, R2U2 can connect these engines in any order. This simplifies
configuration generation from the perspective of C2PO, enabling arbitrary ordering of
instructions. Atomic checker properties can now accept results of temporal logic formu-
las as input, for example, without adding a confusing step delay in the verdict stream.

AT Checker Extended Mode. The C version of the atomic checker has an extended
mode allowing for additional comparisons and filters beyond the standard hardware-
compatible set. In extended mode, the atomic checker produces Boolean “atomics”
from conditionals, where each conditional compares the result of a filter to either a
constant or another input signal. Filters are predefined functions such as simple data
type casts (bool, int, float, etc.) or mathematical functions like rate, moving average, or
absolute angle difference. For example:

• a5 := abs_diff_angle(s3,105) < 50; checks if the absolute difference
between the data of signal 3 and the value 105 when treated as angles is below 50.

• a43 := int(s32) == s33; checks that the values of signals 32 and 33 are in
agreement when treated as integers.

Booleanizer. The R2U2 V3.0C implementation includes a new general-purpose com-
puting module that uses a three-address code representation [7] called the Booleanizer
that can take the place of the AT checker. This module enables arbitrary expressions
over non-Boolean data types using arithmetic, bitwise, and relational operators as well
as extended set aggregation operators such as “forexactlyn” or “foratmostn” operators.

494 C. Johannsen et al.

5 Discussion

R2U2’s toolchain now provides an effective means by which to formalize, validate,
and verify system requirements in real time, giving users control and transparency of
the memory and feature set of their target-specific monitors. We have combined the
collection of capabilities from previously-published R2U2 case studies into one modu-
lar, centralized implementation that we have rigorously evaluated for correctness (e.g.,
using [19,38]).

C2PO and its new specification language enable higher-level abstractions for users
that make the specification development process faster, more transparent, and less
reliant on a deep understanding of R2U2’s underlying algorithms. The new GUI front-
end allows up-front specification design and resource usage estimation by system
designers so that users can rapidly prototype specifications before downloading and
using R2U2. These improvements make specifying, validating, and monitoring system
requirements easier and more accessible to the systems that stand to benefit most from
RV. Since specification is the biggest bottleneck to formal methods and autonomy [37],
this is an important feature for an RV engine.

It is now much easier to integrate R2U2 into production environments, like NASA
cFS/cFE [25,28] or ROS [31], due to the unified front end compiler, expanded engine
capabilities, and better user tooling. Recently R2U2 has launched on several real-life,
full-scale air and space missions, largely enabled by these advancements. This major
upgrade lays a solid foundation for expanded RV capabilities and integration into a
wider array of missions and embedded architectures.

References

1. Ryan, J.C., Cummings, M.L., Roy, N., Banerjee, A., Schulte, A.: Designing an Interactive
Local and Global Decision Support System for Aircraft Carrier Deck Scheduling. AIAA
Infotech (2011)

2. Aurandt, A., Jones, P., Rozier, K.Y.: Runtime verification triggers real-time, autonomous
fault recovery on the CySat-I. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA For-
mal Methods. NFM 2022. LNCS, vol. 13260, pp. 816–825. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-06773-0_45

3. Badger, J.M., Strawser, P., Claunch, C.: A distributed hierarchical framework for autonomous
spacecraft control. In: 2019 IEEE Aerospace Conference, pp. 1–8. IEEE (2019)

4. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE TC C–35(8),
677–691 (1986)

5. Cauwels, M., Hammer, A., Hertz, B., Jones, P.H., Rozier, K.Y.: Integrating runtime verifica-
tion into an automated UAS traffic management system. In: Muccini, H., et al. (eds.) ECSA
2020. CCIS, vol. 1269, pp. 340–357. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59155-7_26

6. Cooper, K., Eckhardt, J., Kennedy, K.: Redundancy elimination revisited. In: 2008 Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 12–21
(2008)

7. Cooper, K.D., Torczon, L.: Engineering a Compiler. Elsevier (2011)
8. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-

time system architecture. In: Proceedings of SciTech Forum. p. Online. 2021–0566, AIAA,
January 2021. https://doi.org/10.2514/6.2021-0566

https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.1007/978-3-030-59155-7_26
https://doi.org/10.2514/6.2021-0566

R2U2 Version 3.0 495

9. Dabney, J.B.: Using assume-guarantee contracts in autonomous spacecraft. Flight Software
Workshop (FSW), February 2021. https://www.youtube.com/watch?v=zrtyiyNf674

10. Dabney, J.B., Rajagopal, P., Badger, J.M.: Using assume-guarantee contracts for develop-
mental verification of autonomous spacecraft. Flight Software Workshop (FSW), February
2022. https://www.youtube.com/watch?v=HFnn6TzblPg

11. Erzberger, H., Heere, K.: Algorithm and operational concept for resolving short-range con-
flicts. Proc. IMechE G J. Aerosp. Eng. 224(2), 225–243 (2010). https://doi.org/10.1243/
09544100JAERO546, http://pig.sagepub.com/content/224/2/225.abstract

12. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verifica-
tion tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 241–262.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_14

13. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian network reason-
ers on-board FPGAs: flight-certifiable system health management for embedded systems. In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 215–230. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_18

14. Hammer, A., Cauwels, M., Hertz, B., Jones, P., Rozier, K.Y.: Integrating runtime verification
into an automated UAS traffic management system (2021). https://doi.org/10.1007/s11334-
021-00407-5

15. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket
control system. In: Proceedings of the 13th NASA Formal Methods Symposium (NFM
2021), May 2021. http://temporallogic.org/research/NFM21/

16. Johannsen, C., et al.: OpenUAS Version 1.0. IEEE, Athens, Greece (Virtual), June 2021
17. Kempa, B., Johannsen, C., Rozier, K.Y.: Improving usability and trust in real-time verifica-

tion of a large-scale complex safety-critical system. Ada User Journal (2022)
18. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime

verification for fault disambiguation on Robonaut2. In: Bertrand, N., Jansen, N. (eds.) FOR-
MATS 2020. LNCS, vol. 12288, pp. 196–214. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-57628-8_12 https://research.temporallogic.org/papers/KZJZR20.pdf

19. Li, J., Rozier, K.Y.: MLTL benchmark generation via formula progression. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 426–433. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03769-7_25

20. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 3–22. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5_1

21. Lowry, M., Bajwa, A., Quach, P., Karsai, G., Rozier, K., Rayadurgam, S.: Autonomy Oper-
ating System for UAVs, April 2017. https://nari.arc.nasa.gov/sites/default/files/attachments/
15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf

22. Lowry, M., Bajwa, A.: Autonomy Operating System (AOS) for UAVs. Proposal Presentation,
NASA Ames Research Center, Moffett Field, California, June 2015

23. Luppen, Z., et al.: Elucidation and analysis of specification patterns in aerospace system
telemetry. In: In: Deshmukh, J.V., Havelund, K., Perez, I. (eds) NASA Formal Methods.
NFM 2022. LNCS, vol. 13260, pp. 527–537. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06773-0_28

24. Luppen, Z.A., Lee, D.Y., Rozier, K.Y.: A case study in formal specification and runtime
verification of a CubeSat communications system. In: SciTech. AIAA, Nashville, TN, USA,
January 2021

25. McComas, D.: NASA/GSFC’s Flight Software Core Flight System. In: Flight Software
Workshop. Southwest Research Institute, San Antonio, Texas, November 2012

26. McMillan, K.L.: The SMV Language. Cadence Berkeley Labs, pp. 1–49 (1999)

https://www.youtube.com/watch?v=zrtyiyNf674
https://www.youtube.com/watch?v=HFnn6TzblPg
https://doi.org/10.1243/09544100JAERO546
https://doi.org/10.1243/09544100JAERO546
http://pig.sagepub.com/content/224/2/225.abstract
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/s11334-021-00407-5
https://doi.org/10.1007/s11334-021-00407-5
http://temporallogic.org/research/NFM21/
https://doi.org/10.1007/978-3-030-57628-8_12
https://doi.org/10.1007/978-3-030-57628-8_12
https://research.temporallogic.org/papers/KZJZR20.pdf
https://doi.org/10.1007/978-3-030-03769-7_25
https://doi.org/10.1007/978-3-030-03769-7_25
https://doi.org/10.1007/978-3-030-25543-5_1
https://doi.org/10.1007/978-3-030-25543-5_1
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/15%29%20Mike%20Lowry%20SAEApril19-2017.Final_.pdf
https://doi.org/10.1007/978-3-031-06773-0_28
https://doi.org/10.1007/978-3-031-06773-0_28

496 C. Johannsen et al.

27. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: Monitoring and Diagnosis of Secu-
rity Threats for Unmanned Aerial Systems, pp. 1–31, April 2017. https://doi.org/10.1007/
s10703-017-0275-x

28. NASA: core Flight System (cFS) Background and Overview (2014). https://cfs.gsfc.nasa.
gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf

29. NASA: NASA Export Control Program Operations Manual (2015). https://nodis3.gsfc.nasa.
gov/NPR_attachments/N_AII_2190_0001.pdf

30. Okubo, N.: Using R2U2 in JAXA program. Electronic correspondence (November-
December 2020). series of emails and zoom call from JAXA to PI with technical questions
about embedding R2U2 into an autonomous satellite mission with a provable memory bound
of 200KB

31. Open Robotics: Robot Operating System (ROS) (2021). https://www.ros.org/
32. Radio Technical Commission for Aeronautics: DO-333 - formal methods supplement to DO-

178C and DO-278A (2011). https://www.rtca.org/content/standards-guidance-materials
33. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic. In: Hung,

D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 233–250. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59152-6_13

34. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_24

35. Rozier, K.Y.: R2U2 in space: system and software health management for small satellites. In:
Spacecraft Flight Software Workshop (FSW), December 2016. https://www.youtube.com/
watch?v=OAgQFuEGSi8, https://www.youtube.com/watch?v=OAgQFuEGSi8

36. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent Hardware-Enabled Sensor and Software
Safety and Health Management for Autonomous UAS. Technical Memorandum NASA/TM-
2015-218817, NASA, NASA Ames Research Center, Moffett Field, CA 94035, USA, May
2015

37. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and autonomy. In:
Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48869-1_2

38. Rozier, K.Y.: On the evaluation and comparison of runtime verification tools for hardware
and cyber-physical systems. In: Proceedings of International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification Tools (RV-
CUBES), Seattle, WA, USA, vol. 3, pp. 123–137. Kalpa Publications, September 2017.
https://easychair.org/publications/paper/877G

39. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: Proceedings of International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Ver-
ification Tools (RV-CUBES), Seattle, WA, USA, vol. 3, pp. 138–156. Kalpa Publications,
September 2017. https://easychair.org/publications/paper/Vncw

40. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of security
threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS,
vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-
3_15

41. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime analysis with R2U2: a tool exhibi-
tion report. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 504–509.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_35

42. Schumann, J., Roychoudhury, I., Kulkarni, C.: Diagnostic reasoning using prognostic infor-
mation for unmanned aerial systems. In: Proceedings of the 2015 Annual Conference of the
Prognostics and Health Management Society (PHM2015) (2015)

https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://nodis3.gsfc.nasa.gov/NPR_attachments/N_AII_2190_0001.pdf
https://nodis3.gsfc.nasa.gov/NPR_attachments/N_AII_2190_0001.pdf
https://www.ros.org/
https://www.rtca.org/content/standards-guidance-materials
https://doi.org/10.1007/978-3-030-59152-6_13
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-54862-8_24
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://www.youtube.com/watch?v=OAgQFuEGSi8
https://doi.org/10.1007/978-3-319-48869-1_2
https://easychair.org/publications/paper/877G
https://easychair.org/publications/paper/Vncw
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-46982-9_35

R2U2 Version 3.0 497

43. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.:
Towards real-time, on-board, hardware-supported sensor and software health management
for unmanned aerial systems. In: Proceedings of the 2013 Annual Conference of the Prog-
nostics and Health Management Society (PHM2013), pp. 381–401, October 2013

44. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.:
Towards real-time, on-board, hardware-supported sensor and software health management
for unmanned aerial systems. Int. J. Prognostics Health Manage. (IJPHM) 6(1), 1–27 (2015)

45. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination protocol for
an automated air traffic control system. Sci. Comput. Program. J. 96(3), 337–353 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

