
1

Improving Usability and Trust in Real-Time
Verification of a Large-Scale Complex
Safety-Critical System∗

Brian Kempa, Chris Johannsen, Kristin Yvonne Rozier
Iowa State University, Ames, Iowa, USA; email: {bckempa,cgjohann,kyrozier}@iastate.edu

Abstract

Large-scale complex safety-critical systems are inher-
ently difficult to both verify in real-time and transpar-
ently validate. The iterative specification development
process is challenging when the performance and reli-
ability demands of target systems (e.g., flight software)
require strict behavior of verification tools which often
trade off usability for performance and conformance.
Providing both strict behavioral guarantees and effi-
ciency of this iterative process allows specification au-
thors and engineers to more quickly deploy their systems
and have more confidence in their verification efforts.

Our on-going work addresses this challenge by pro-
viding validation transparency for specification authors
during system development while maintaining necessary
performance during deployment by extending R2U2,
a real-time verification tool specifically designed for
resource-constrained systems. We also strengthen the
trust in R2U2 by providing a robust suite of tests to show
adherence to the strict requirements of safety-critical
flight software. These tasks are efforts toward transi-
tioning R2U2 from a research-grade tool to a flight-
software-grade tool suitable for use by real-time safety-
critical systems and thereby answer the calls for ex-
panded developmental-to-operational verification by,
e.g., the Vehicle System Management (VSM) team of the
NASA Lunar Gateway.

Keywords: Real-Time and Safety-Critical Systems, Run-
time Verification, Developmental Contract Verification,
Assume-Guarantee Contracts.

1 Introduction
Complex autonomous real-time systems such as robots,
rovers, satellites, and unmanned aerial systems (UAS) must
operate reliably for extended periods without human inter-
vention. Runtime verification is a family of techniques that
enable such systems to check themselves during operation
by identifying and correcting problems as they occur. The
legacy approach to runtime verification in software is to use

∗This work was supported in part by NASA Cooperative Agreement
Grant #80NSSC21M0121 and NSF CAREER Award CNS-1552934.

custom ad-hoc algorithms that are difficult to implement,
susceptible to errors, and extremely difficult to verify [1].
Large-scale complex safety-critical systems require both real-
time verification during system operation but also transparent
requirement validation during system development that can
carry through to runtime.

After an extensive survey of all currently-available verifica-
tion tools, the NASA Lunar Gateway Project selected the
R2U2 runtime verification engine for use in developing and
monitoring autonomous spacecraft software, starting with
the Vehicle System Manager (VSM) [1]. The choice was
based primarily on R2U2’s unobtrusive, flight-certifiable ar-
chitecture, proven capacity for real-time runtime verification
on-board safety-critical systems, and an open-source, exten-
sible C codebase that integrates into the NASA core Flight
System/core Flight Executive (cFS/cFE) [2] environment [3].
A hardware version of R2U2 that implements the same algo-
rithms as the C version previously embedded in the space left
over on the FPGA controlling NASA’s Robonaut2’s knee to
provide real-time fault disambiguation [4]. The three imple-
mentations of R2U2 (hardware/FPGA, C, and C++) have ver-
ified many previous safety-critical systems; see [5] for a tool
overview and summary of previous case studies. R2U2’s un-
derlying specification-monitoring algorithms were originally
created specifically to fulfill NASA’s needs for a Responsive,
Reliable, Unobtrusive Unit (hence the name R2U2) [6], and
optimized (with accompanying proofs of correctness) for the
Robonaut2 study [4].

While design-by-contract systems like SPARK have provided
formal verification in this domain [7], VSM focused on stand-
alone monitors for their verification efforts because they
sought runtime visibility of system status instead of design
time prescription of component correctness, therefore their
selected tool needed to be independent from the flight soft-
ware implementation [1]. The VSM team has an established
verification workflow that includes extensive requirement elic-
itation in the form of Assume-Guarantee Contracts (AGCs),
and the design-time verification technique of model check-
ing to verify AGCs against state-machine models of various
sub-systems. However, specification (of models and their
requirements) is the biggest bottleneck to verification of au-
tonomy [8]. Developing a system model of required fidelity to
fully leverage model checking involves significant effort and

Ada User Jour na l Vo lume XX, Number X, June 2022

2 Usabi l i ty and Trust in Real -T ime Ver i f i ca t ion of a Safe ty-Cr i t i ca l System

expertise, so only some AGCs are suitable for model checking
and others instead undergo a lighter-weight validation anal-
ysis with a modified form of runtime verification via R2U2
during development phase instead [9]. The end-goal is to
validate AGCs by simulating the possible system executions
that satisfy them during system development time, then verify
them over simulated system runs (developmental verification)
and eventual mission-time execution (operational verifica-
tion); see [10] for a description of the distinction between
developmental runtime verification and simulation.

We describe ongoing work extending the open-source,
publicly-available runtime verification engine R2U2, to en-
able its use for public purposes that are relevant to NASA,
including enabling system designers to transparently capture
their desired requirements, and making verification results
accessible to users. We aim to enhance R2U2 to make it
more accessible to software developers and to make R2U2
output tie transparently to the input AGCs. Since the goal
is to measurably increase R2U2’s usability, user documenta-
tion/example uses, and both input and output interfacing, we
are evolving R2U2 with regular feedback from a representa-
tive NASA mission, in this case, the Lunar Gateway Vehicle
System Manager (VSM) team, as an outside check that these
goals are being accomplished.

This report previews ongoing work expanding R2U2’s us-
ability and trust as a runtime verification engine optimized
for a minimal resource footprint running on-board safety-
critical systems. Figure 1 displays the features discussed here
bounded by the dashed box. The contributions of this paper
are (1) extensions to the input and output formats of R2U2
to improve usability when validating and verifying complex
specifications and (2) increasing trust in the underlying run-
time monitor of R2U2 while maturing research software for
flight. Section 2 explores extensions to R2U2’s input and
output syntax to facilitate specification authorship and valida-
tion. Our approach to preparing research software for flight is
highlighted in Section 3. Finally, Section 4 summarizes work
in progress and next steps.

2 Usability

R2U2 utilizes a minimal input/output syntax to meet real-time
deadlines in resource-constrained embedded systems. This
low-level syntax makes authoring specifications, validating
specifications against requirements, and interpreting verifica-
tion results more difficult for system engineers. As systems
scale in complexity (and often criticality) the mental overhead
quickly becomes untenable; however, intuitive naming and
reporting schemes can improve specification transparency,
reducing iteration time during specification and system de-
velopment. We extend R2U2’s specification syntax with
three enhancements to facilitate human validation: Assume-
Guarantee Contracts (AGCs), set aggregation operations, and
more readable syntax. These ergonomic improvements im-
pact efficiency in authoring and validating specifications, as
shown in the “develop” path in Figure 1.

Figure 1: Workflow of the design, validation, and deployment
of R2U2 on board the Lunar Gateway where the components
in the dashed box are those that the contributions of this pa-
per refer to. A specification author translates the set of AGC
project requirements to a set of Mission-time Linear Temporal
Logic (MLTL) specifications, compiles these specifications into
an R2U2 configuration, then tests and validates the configura-
tion locally. Once the author validates a configuration, engi-
neers then deploy the configuration onto the target platform.
(Photo of Lunar Gateway, https://flic.kr/p/2mHPaLg,
by NASA/Alberto Bertolin CC BY-NC-ND 2.0 / Cropped)

2.1 Assume-Guarantee Contracts

VSM uses AGCs to capture requirements [1]. AGCs are a sim-
ple yet powerful requirement framework, but encoding them
using logical implication (assumption→ guarantee) con-
flates inactive and verified contracts because R2U2’s verdicts
are Boolean.

The "Old Syntax" in Figure 2 demonstrates a workaround
encoding the three conditions as separate formulas in a "one-
hot" pattern such that one and only one is true at each timestep.
In contrast, we implmented an AGC operator "⇒" in R2U2,
which efficiently computes the trinary status and outputs a
single clear verdict. The new syntax is easier to write, read,
and validate.

2.2 Set Aggregation

We also implement set-aggregation operations as first sug-
gested in [11], permitting succinct requirements over sets
of expressions. The set-aggregation operators are syntactic
sugar and eliminate long repetitive structures that may hide
typos. They accept a set of expressions and evaluate a set
property such as “exactly one of these” and are simpler for
system engineers to write, interpret, and validate.

For example, a requirement may state that exactly one task
shall be active simultaneously. The "Old Syntax" in Figure 2
demonstrates writing this as a disjunction of conjunctions
that grow exponentially with the number of tasks, while the
“New Syntax” captures this succinctly with a set-aggregation
operation.

2.3 Syntax Readability

Internally, R2U2 addresses all values by their index positions
in internal vectors. Accordingly, interpreting the output of
the old syntax seen in Figure 2 requires knowing the formula
number, and mentally mapping that back though the atomic

Volume XX, Number X, June 2022 Ada User Jour na l

https://flic.kr/p/2mHPaLg

B. Kempa, C. Johannsen, K. Y. Roz ier 3

Old Syntax

a0 && ((a1 && !a2 && !a3) || // AGC:
(!a1 && a2 && !a3) || // TRUE
(!a1 && !a2 && a3));

!a0; // AGC: INACTIVE
a0 && !((a1 && !a2 && !a3) || // AGC:

(!a1 && a2 && !a3) || // FALSE
(!a1 && !a2 && a3));

a0 = bool(s0) == 1;
a1 = bool(s1) == 1;
a2 = bool(s2) == 1;
a3 = bool(s3) == 1;

New Syntax

RVALID: resRactive => resRvalid;

taskAactive = bool(Aactive) == 1;
taskBactive = bool(Bactive) == 1;
taskCactive = bool(Cactive) == 1;
resRactive = bool(Ractive) == 1;
resRvalid =

exactly-one-of(active_tasks) == 1;

active_tasks = {taskAactive,
taskBactive,
taskCactive};

Input

Time s0 s1 s2 s3
resRactive taskAactive taskBactive taskCactive

0 T T F F
1 T F T F
2 F F F F
3 T T T F

Old Output New Output
0:0 T RVALID:0 TRUE
1:0 F
2:0 F
0:1 T RVALID:1 TRUE
1:1 F
2:1 F
0:2 F RVALID:2 INACTIVE
1:2 T
2:2 F
0:3 F RVALID:3 FALSE
1:3 F
2:3 T

Figure 2: An example usage of R2U2 with the old and new syn-
taxes. The specification shown captures the system behavior
that when a shared resource R is active, exactly one task is us-
ing that resource. There is no native support for AGCs and vari-
able names in the old syntax so the specification must be written
without these features i.e., each case of the AGC must be explic-
itly written out and each variable uses a generic name. The new
syntax adds these features and as such is more human-readable
and easier to validate.

number to the input signal number, increasing the complexity
of writing, reading and validating specifications.

Our new syntax and tooling support human-readable labels for
formulas, variables, and subexpressions. Named subexpres-
sions allow specifications to resemble the requirements they
monitor more closely, while formula names carry through
to the output stream, both easing validation. Because the
VSM team selected R2U2 for its real-time performance and
bounded resource guarantees under flight software restric-
tions [1], these ergonomic improvements cannot impact the
deployed monitor performance. Most of these features only
affect the formula compiler, but human-readable output like
formula names requires auxiliary information and runtime ac-
tions. While development and deployment workflows utilize
the same specification files, R2U2 now stores auxiliary data
like formula names separately. Deployment monitors do not
compile the auxiliary output hooks or read the auxiliary data
files, leaving them strictly more performant than development
builds, under equivalent conditions.

Additionally, we added an option to dynamically map input
signals by the name used in the specification. This added input
robustness decouples specification authorship from engineer-
ing decisions until target integration, i. e., changing structure
definitions no longer requires specification modification.

3 Trust
Academic research software ("gradware") is developed under
different motivations than projects targeting third-party use,
and unpublishable custodial tasks (e.g., documentation, test-
ing) are often are not attended to beyond what is required for
peer acceptance. Software deployed in critical applications,
however, must meet a higher bar than standard software best
practices. As we convert R2U2 from a research tool to a flight-
certified component, we establish trust in R2U2’s output with
a hierarchical testing campaign, automated analysis-guided
peer-review, and adherence to open-source best practices.

3.1 Testing
Our new R2U2 test suite design supports fast iteration as
we react to VSM’s needs and meet established flight soft-
ware verification standards, bridging traditional and formal
methods.

Unit Tests: Following NASA’s standards for VSM flight
software, unit tests verify individual functions (e. g., queue
operations) and must exercise every line and branch. We
parameterize tests over the Cartesian product of the input
parameters, covering the input space without repeated code.

R2U2’s 66 unit tests currently cover 98.1% of the 577 exe-
cutable lines and 52.3% of the 2276 branches. The low branch
coverage results from a standard C macro idiom for debug
print statements that create a do-while structure that can never
repeat, generating an unreachable jump instruction. Crucially,
these spurious branches do not appear in deployment binaries.

Integration Tests: These black-box tests confirm implemen-
tation correctness by comparing the output of R2U2 with a
slower but simpler Python oracle over a benchmark set with

Ada User Jour na l Vo lume XX, Number X, June 2022

4 Usabi l i ty and Trust in Real -T ime Ver i f i ca t ion of a Safe ty-Cr i t i ca l System

2000+ combinations of formulas and input signals. We cu-
rate this collection to exercise all logical operators in varied
compositions, including published and randomly-generated
benchmark specifications. A core set of 50 acceptance tests
that cover common cases and check for regressions of pre-
vious issues runs in under a minute on consumer hardware.
Although the total space of formulas and inputs is infeasible
to cover exhaustively, we “fuzz” for edge cases beyond the
curated set with randomized inputs and formulas.

3.2 Automated Analysis and Review

GitLab provides version control; all changes automatically
trigger the Continuous Integration (CI) server, which scans
the source with linters and static analysis tools, builds a debug
binary with maximum compiler warnings, and runs both test
suites with the sanitizer runtimes linked to catch memory mis-
takes not detectable at compile time. We use CodeChecker2

to aggregate analysis results from Clang Tidy, CLang Static
Analyzer, Cppcheck, Infer, and cpplint. The CI report assists
in finding potential defects during code reviews. CI does
not measure performance since benchmarks are highly sensi-
tive to environmental context (e. g., working directory, cache
alignment, etc.) [12]. Instead, profile-guided optimization is
performed on integration target hardware.

3.3 Release Best Practices

Though R2U2 is already open source, code availability is
insufficient to ensure the project remains maintainable and
accessible for developers of R2U2 and projects incorporating
using it. Popular open-source libraries solve this problem
with a series of best practices R2U2 is adopting: an open Git
repository with full version history, public issue tracking, an
established open license, and documentation targeting both
users. These tasks are vital to transitioning any research-grade
software to software suitable for flight. Beyond the existing
in-line comments, we are preparing three documents: 1) a
user’s guide detailing the use of R2U2 (e.g., formula syntax,
output format, target platform integration), 2) a developer’s
guide with architectural decisions, code style, and algorithm
descriptions with proofs, and 3) an API reference autogener-
ated from the source using Doxygen.

4 Conclusion
NASA’s VSM team is actively developing specifications for
the Lunar Gateway using our tool chain. The new usability
and trust features are crucial for the transition of R2U2 from a
research-grade academic tool to one suitable for safety-critical
flight-software systems. We continue to collaboratively evalu-
ate user needs, modify the tool accordingly, and monitor the
effectiveness of delivered solutions. We are looking forward
to insightful experience reports and technical evaluations at
the end of the project.

Additionally we are working on: 1) Adding an optimization
pass to formula compilation that removes unnecessary in-
structions (e. g., double negations) and improves partial result

2https://github.com/Ericsson/codechecker

reuse to improve performance and reduce resource require-
ments. 2) Building a visual configuration utility for tuning the
static memory bound parameters that provides statistics on
formula resource usage. This is also useful when designing
new formula sets for a monitor with existing bounds.

References
[1] J. B. Dabney, J. M. Badger, and P. Rajagopal, “Adding

a verification view for an autonomous real-time system
architecture,” in AIAA Scitech 2021, p. 0566, 2021.

[2] NASA, “core Flight System (cFS) Background
and Overview.” Online: https://cfs.gsfc.nasa.gov/

cFS-OviewBGSlideDeck-ExportControl-Final.pdf, 2014.

[3] J. B. Dabney, P. Rajagopal, and J. M. Badger,
“Using assume-guarantee contracts in autonomous
spacecraft.” Flight Software Workshop (FSW) On-
line: https://www.youtube.com/watch?v=
zrtyiyNf674, February 2021.

[4] B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and
K. Y. Rozier, “Embedding Online Runtime Verifica-
tion for Fault Disambiguation on Robonaut2,” in FOR-
MATS, Proc. 18th, vol. 12288 of LNCS, (Vienna, Aus-
tria), pp. 196–214, Springer, September 2020.

[5] K. Y. Rozier and J. Schumann, “R2U2: Tool Overview,”
in RV-CUBES, vol. 3, (Seattle, WA, USA), pp. 138–156,
Kalpa Publications, September 2017.

[6] T. Reinbacher, K. Y. Rozier, and J. Schumann,
“Temporal-logic based runtime observer pairs for system
health management of real-time systems,” in TACAS,
Proc. 20th, vol. 8413 of LNCS, pp. 357–372, Springer,
April 2014.

[7] P. Neto, J. Tojal, J. Veríssimo, and S. M. de Sousa,
“Towards a formally verified space mission software
using spark.,” Ada User Journal, vol. 40, no. 4, pp. 243
– 246, 2019.

[8] K. Y. Rozier, “Specification: The biggest bottleneck in
formal methods and autonomy,” in VSTTE, Proc. 8th,
vol. 9971 of LNCS, (Toronto, ON, Canada), pp. 1–19,
Springer-Verlag, July 2016.

[9] J. B. Dabney, P. Rajagopal, and J. M. Badger, “Us-
ing assume-guarantee contracts for developmental ver-
ification of autonomous spacecraft.” Flight Software
Workshop (FSW) Online: https://www.youtube.
com/watch?v=HFnn6TzblPg, February 2022.

[10] K. Y. Rozier, “From simulation to runtime verifica-
tion and back: Connecting single-run verification tech-
niques,” in SpringSim, (Tucson, AZ, USA), pp. 1–10,
Society for Modeling & Simulation Int’l, April 2019.

[11] A. Hammer, M. Cauwels, B. Hertz, P. Jones, and K. Y.
Rozier, “Integrating runtime verification into an auto-
mated uas traffic management system,” Innovations in
Systems and Software Engineering: A NASA Journal,
July 2021.

Volume XX, Number X, June 2022 Ada User Jour na l

https://github.com/Ericsson/codechecker
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://cfs.gsfc.nasa.gov/cFS-OviewBGSlideDeck-ExportControl-Final.pdf
https://www.youtube.com/watch?v=zrtyiyNf674
https://www.youtube.com/watch?v=zrtyiyNf674
https://www.youtube.com/watch?v=HFnn6TzblPg
https://www.youtube.com/watch?v=HFnn6TzblPg

B. Kempa, C. Johannsen, K. Y. Roz ier 5

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney, “Producing wrong data without doing any-

thing obviously wrong!,” ACM Sigplan Notices, vol. 44,
no. 3, pp. 265–276, 2009.

Ada User Jour na l Vo lume XX, Number X, June 2022

	Introduction
	Usability
	Assume-Guarantee Contracts
	Set Aggregation
	Syntax Readability

	Trust
	Testing
	Automated Analysis and Review
	Release Best Practices

	Conclusion

