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Linear Temporal Logic over finite traces (LTL f ) was proposed in 2013 and has attracted 
increasing interest around the AI community. Though the theoretic basis for LTL f has been 
thoroughly explored since that time, there are still few algorithmic tools that are able to 
provide an efficient reasoning strategy for LTL f . In this paper, we present a SAT-based 
framework for LTL f satisfiability checking, which is the foundation of LTL f reasoning. 
We use propositional SAT-solving techniques to construct a transition system, which is 
an automata-style structure, for an input LTL f formula; satisfiability checking is then 
reduced to a path-search problem over this transition system. Based on this framework, 
we further present CDLSC (Conflict-Driven LTL f Satisfiability Checking), a novel algorithm 
(heuristic) that leverages information produced by propositional SAT solvers, utilizing both 
satisfiability and unsatisfiability results. More specifically, the satisfiable results of the 
SAT solver are used to create new states of the transition system and the unsatisfiable 
results to accelerate the path search over the system. We evaluate all 5 off-the-shelf 
LTL f satisfiability algorithms against our new approach CDLSC. Based on a comprehensive 
evaluation over 4 different LTL f benchmark suits with a total amount of 9317 formulas, our 
time-cost analysis shows that 1) CDLSC performs best on checking unsatisfiable formulas 
by achieving approximately a 4X time speedup, compared to the second-best solution 
(K-LIVE [1]); 2) Although no approaches dominate checking satisfiable formulas, CDLSC
performs best on 2 of the total 4 tested satisfiable benchmark suits; and 3) CDLSC gains 
the best overall performance when considering both satisfiable and unsatisfiable instances.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Linear Temporal Logic over Finite Traces, or LTL f , is a specification language gaining popularity in the AI community for 
formalizing and validating system behaviors. While standard Linear Temporal Logic (LTL) is interpreted on infinite traces, 
LTL f is interpreted over finite traces [2]. While LTL is typically used in formal-verification settings, where we are interested 
in nonterminating computations, cf. [3,4],2 LTL f is more attractive in AI scenarios focusing on finite behaviors, such as 
planning [7–11], plan constraints [12,13], and user preferences [14–16]. Due to the wide spectrum of applications of LTL f
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in the AI community [17,29], it is worthwhile to study and develop an efficient framework for solving LTL f -reasoning 
problems. Just as propositional satisfiability checking is one of the most fundamental propositional reasoning tasks, LTL f
satisfiability checking is a fundamental task for LTL f reasoning.

Given an LTL f formula, the satisfiability problem asks whether there is a finite trace that satisfies the formula. A “clas-
sical” solution to this problem is to reduce it to the LTL satisfiability problem [2]. The advantage of this approach is that 
the LTL satisfiability problem has been studied for decades, and many mature tools are available, cf. [18–20]. Thus, LTL f
satisfiability checking can benefit from progress in LTL satisfiability checking. There is, however, an inherent drawback that 
an extra cost has to be paid when checking LTL formulas, as the tool searches for a “lasso” (a lasso consists of a finite path 
plus a cycle, representing an infinite trace), whereas models of LTL f formulas are just finite traces. Based on this motivation, 
[21] presented a tableau-style algorithm for LTL f satisfiability checking. They showed that the dedicated tool, Aalta-finite, 
which conducts an explicit-state search for a satisfying trace, outperforms extant tools for LTL f satisfiability checking.

The conclusion of a dedicated solver being superior to LTL f satisfiability checking from [21], seems to be out of date 
by now because of the recent dramatic improvement in propositional SAT solving, cf. [22]. On one hand, SAT-based tech-
niques have led to a significant improvement on LTL satisfiability checking, outperforming the tableau-based techniques 
of Aalta-finite [21]. On the other hand, SAT-based techniques are now dominant in symbolic model checking [23,24]. Our 
preliminary evaluation indicates that LTL f satisfiability checking via SAT-based model checking [25,26] or via SAT-based 
LTL satisfiability checking [27] both outperform the tableau-based tool Aalta-finite. Also, a recent LTL f satisfiability checker 
LTL2SAT implements a similar approach to Bounded Model Checking [28], checking the satisfiability of the LTL f formulas 
iteratively over the length of the possible models until the theoretic upper threshold is reached. Such approach also shows 
the advantage when compared to Aalta-finite on particular benchmark suits [29]. Thus, the question raised initially in [18]
needs to be re-opened with respect to LTL f satisfiability checking: is it best to reduce to SAT-based model checking or 
develop a dedicated SAT-based tool?

Inspired by [27], we present an explicit-state SAT-based framework for LTL f satisfiability. We construct the LTL f transition 
system by utilizing SAT solvers to compute the states explicitly. For details, we propose the neXt Normal Form (XNF) for an 
LTL formula, which can be treated as a propositional formula by taking each temporal operator as a new atomic proposition, 
like the idea presented in [30]. The SAT solver is then utilized to compute states of the transition system w.r.t. the input 
LTL formula. Furthermore, by making use of both satisfiability and unsatisfiability information from SAT solvers, we propose 
a conflict-driven algorithm, CDLSC, for efficient LTL f satisfiability checking. We show that by specializing the transition-
system approach of [27] to LTL f and its finite-trace semantics, we get a framework that is significantly simpler and yields 
a much more efficient algorithm CDLSC than the one in [27].

We conduct a comprehensive comparison among 5 different LTL f -solving approaches off the shelf. Based on a com-
prehensive evaluation over 4 different LTL f benchmark suits with a total amount of 9317 formulas, our time-cost analysis 
shows that 1) CDLSC performs best on checking unsatisfiable formulas by achieving approximately a 4X time speedup, com-
pared to the second-best solution (K-LIVE [1]); 2) Although no approaches dominate checking satisfiable formulas, CDLSC
performs best on 2 of the total 4 tested satisfiable benchmark suits; and 3) CDLSC gains the best overall performance when 
considering both satisfiable and unsatisfiable instances.

Compared to the previous conference version [31], this paper extends the contribution in the following way:

• Provide the full proofs for all the lemmas and theorems;
• Introduce more examples to help understand our proposed methodology;
• Re-construct the experiments by 1) allowing a timeout of 1 hour rather than 1 minute and 2) applying more benchmark 

suits from real life, to better support the efficiency of CDLSC.

The rest of this paper is organized as follows. Section LTL over Finite Traces introduces definitions for LTL f and its satis-
fiability problem; Section Approach Overview provides an overview of our new approach in a high level; Section SAT-based 
Explicit-State Checking presents the SAT-based algorithm for LTL f satisfiability checking; Section Conflict-Driven LTL f Satis-
fiability Checking presents CDLSC, the main contribution of this paper; Section Experimental Evaluation demonstrates the 
experimental results; and finally, Section Discussion and Concluding Remarks concludes the paper.

2. LTL over finite traces

Given a set P of atoms, an LTL f formula φ has the form:

φ ::= tt | p | ¬φ | φ ∧ φ | Xφ | φUφ;
where tt is true, ¬ is the negation operator, ∧ is the and operator, X is the strong Next operator and U is the Until operator. 
We also have the duals ff (false) for tt, ∨ for ∧, N (weak Next) for X and R for U . A literal is an atom p ∈P or its negation 
(¬p). Moreover, we use the notation Gφ (Globally) and Fφ (Eventually) to represent ffRφ and ttUφ. Notably, X is the 
standard next operator, while N is weak next; X requires the existence of a successor state, while N does not. Thus Nφ is 
always true in the last state of a finite trace, since no successor exists there. This distinction is specific to LTL f .

LTL f formulas are interpreted over finite traces [2]. Given an atom set P , we define � = 2P be the family of sets of 
atoms. Let ξ ∈ �+ be a finite nonempty trace, with ξ = σ0σ1 . . . σn . We use |ξ | = n + 1 to denote the length of ξ . Moreover, 
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for 0 ≤ i ≤ n, we denote ξ [i] as the i-th position of ξ , and ξi to represent σiσi+1 . . . σn , which is the suffix of ξ from 
position i. We define the satisfaction relation ξ |= φ as follows:

• ξ |= tt; and ξ |= p, if p ∈P and p ∈ ξ [0];
• ξ |= ¬φ, if ξ �|= φ;
• ξ |= φ1 ∧ φ2, if ξ |= φ1 and ξ |= φ2;
• ξ |=Xφ if |ξ | > 1 and ξ1 |= φ;
• ξ |= (φ1Uφ2), if there exists 0 ≤ i < |ξ | such that ξi |= φ2 and for every 0 ≤ j < i it holds that ξ j |= φ1.

Definition 1 (LTL f satisfiability problem). Given an LTL f formula φ over the alphabet �, we say φ is satisfiable iff there is a 
finite nonempty trace ξ ∈ �+ such that ξ |= φ.

Notations. We use cl(φ) to denote the set of subformulas of φ. Let A be a set of LTL f formulas, we denote 
∧

A to be the 
formula 

∧
ψ∈A ψ . The two LTL f formulas φ1, φ2 are semantically equivalent, denoted as φ1 ≡ φ2, iff for every finite trace ξ , 

ξ |= φ1 iff ξ |= φ2. Obviously, we have (φ1 ∨ φ2) ≡ ¬(¬φ1 ∧ ¬φ2), Nψ ≡ ¬X¬ψ and (φ1Rφ2) ≡ ¬(¬φ1U¬φ2).
We say an LTL f formula φ is in Negated Normal Form (NNF) if all negations are in front of only atoms. For example, the 

formula X¬a is in NNF while ¬Xa is not. It is trivial to know that every LTL f formula has an equivalent NNF. Moreover, we 
also define the Tail Normal Form (TNF) of an LTL f formula φ as below.

Definition 2. Assume φ is in NNF, and its TNF tnf(φ) is defined as t(φ) ∧ F T ail, where T ail is a new atom to identify the 
last state of satisfying traces (Motivated from [2]), and t(φ) is an LTL f formula defined recursively as follows:

1. t(φ) = φ if φ is tt, ff or a literal;
2. t(Xψ) = ¬T ail ∧X (t(ψ));
3. t(Nψ) = T ail ∨X (t(ψ));
4. t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2);
5. t(φ1 ∨ φ2) = t(φ1) ∨ t(φ2);
6. t(φ1Uφ2) = (¬T ail ∧ t(φ1))Ut(φ2);
7. t(φ1Rφ2) = (T ail ∨ t(φ1))Rt(φ2).

Theorem 1. φ is satisfiable iff tnf(φ) is satisfiable.

Proof. We provide a sketch of the proof here and the full proof can be found in Appendix. Let ξ, ξ ′ be two non-empty 
finite traces satisfying |ξ | = |ξ ′| and ξ ′[i] = ξ [i] for 0 ≤ i < |ξ | − 1 as well as ξ ′[|ξ | − 1] = ξ [|ξ | − 1] ∪ {T ail}. We can prove 
by induction over the type of φ that ξ |= φ iff ξ ′ |= tnf(φ). For the (⇐) direction, we complement the proof that tnf(φ) is 
satisfiable implies there is such a ξ ′ that ξ ′ |= tnf(φ). �

In the rest of the paper, unless clearly specified, the input LTL f formula is in TNF. Also, since every TNF has the common 
part F T ail, we omit it for simplicity in the following. For example, the formula (¬T ail ∧ a)Ub actually represents the TNF 
(¬T ail ∧ a)Ub ∧F T ail.

3. Approach overview

There is a Non-deterministic Finite Automaton (NFA) Aφ that accepts exactly the same language as an LTL f formula 
φ [2]. Instead of constructing the NFA for φ, we generate the corresponding transition system (Definition 6), by leveraging 
SAT solvers. The transition system represents an intermediate structure of the NFA, in which every state consists of a set 
of subformulas of φ. Notably in most cases, we construct the transition system partially to check the satisfiability of LTL f
formulas on the fly.

The classic approach to generate the NFA from an LTL f formula, i.e., Tableau Construction [32], creates the set of all 
one-transition next states of the current state. Since the number of these states can be extremely large, we leverage SAT 
solvers to compute the next states of the current state iteratively. Although both approaches share the same worst case 
(computing all states in the state space), our new approach is better for on-the-fly checking, as it computes new states only 
if the satisfiability of the formula cannot be determined based on existing states.

We show the SAT-based approach via an example. Consider the formula φ = (¬T ail ∧ a)Ub, whose corresponding tran-
sition system is shown in Fig. 1. The initial state s0 of the transition system is {φ}. To compute the next states of s0, we 
translate φ to its equivalent neXt Normal Form (XNF), e.g., xnf(φ) = (b ∨ ((¬T ail ∧ a) ∧Xφ)), see Definition 5. If we replace 
Xφ in xnf(φ) with new propositions p1, the new formula, denoted xnf(φ)p , is a pure Boolean formula. As a result, a SAT 
solver can compute an assignment for the formula xnf(φ)p . Assume the assignment is {a, ¬b, ¬T ail, p1}, then we can induce 
that (a ∧ ¬b ∧ ¬T ail ∧Xφ) ⇒ φ is true, which indicates {φ} = s0 is a one-transition next state of s0, i.e., s0 has a self-loop 
3



J. Li, G. Pu, Y. Zhang et al. Artificial Intelligence 289 (2020) 103369
s0start s1

¬T ail ∧ a

b

tt

Fig. 1. The corresponding transition system of φ = (¬T ail ∧ a)Ub, where s0 = {φ} and s1 = {tt}.

s0start s1

s2 s3

¬a ∧ ¬T ail

¬a ∧ ¬b ∧ ¬T ail

a ∧ b ∧ c

Fig. 2. An illustration to check on-the-fly on a part of the transition system for φ = (¬T ail)Ua ∧ (¬T ail)U(¬a) ∧ (¬T ail)Ub ∧ (¬T ail)U(¬b) ∧ (¬T ail)Uc. In 
the figure, s0 = {φ}, s1 = {(¬T ail)Ua ∧ (¬T ail)Ub ∧ (¬T ail)U(¬b) ∧ (¬T ail)Uc}, s2 = {(¬T ail)Ua ∧ (¬T ail)Ub ∧ (¬T ail)Uc} and s3 = {tt}.

with the label {a, ¬b, ¬T ail}. To compute another next state of s0, we add the constraint ¬p1 to the input of the SAT solver. 
Repeat the above process and we can construct all states in the transition system.

Checking the satisfiability of φ is then reduced to finding a final state (Definition 7) in the corresponding transition 
system. Since φ is in TNF, a final state s meets the constraint that T ail ∧ xnf(

∧
s)p (recall s is a set of subformulas of φ) is 

satisfiable. For the above example, the initial state s0 is actually a final state, as T ail ∧xnf(φ)p is satisfiable. Because all states 
computed by the SAT solver in the transition system are reachable from the initial state, we can prove that φ is satisfiable 
iff there is a final state in the system (Theorem 4). Notably, a final state of the transition system defined in Definition 7 is 
not a traditional final state in an NFA; it is a state that has a transition to the traditional final state.

We present a conflict-driven algorithm, i.e., CDLSC, to accelerate the satisfiability checking. CDLSC maintains a conflict 
sequence C , in which each element, denoted as C[i] (0 ≤ i < |C|), is a set of states in the transition system that cannot 
reach a final state in i steps. Starting from the initial state, CDLSC iteratively checks whether a final state can be reached, 
and makes use of the conflict sequence to accelerate the search. Consider the formula φ = (¬T ail)Ua ∧ (¬T ail)U(¬a) ∧
(¬T ail)Ub ∧ (¬T ail)U(¬b) ∧ (¬T ail)Uc. In the first iteration, CDLSC checks whether the initial state s0 = {φ} is a final 
state, i.e., whether T ail ∧ xnf(φ)p is satisfiable. The answer is negative, so s0 cannot reach a final state in 0 steps and can be 
added into C[0]. However, we can do better by leveraging the Unsatisfiable Core (UC) returned from the SAT solver. Assume 
that we get the UC u1 = {(¬T ail)Ua, (¬T ail)U(¬a)}. That indicates every state s containing u, i.e., s ⊇ u, is not a final state. 
As a result, we can add u instead of s0 into C[0], making the algorithm much more efficient.

Now in the second iteration, CDLSC first tries to compute a one-transition next state of s0 that is not included 
in C[0]. (Otherwise the new state cannot reach a final state in 0 step.) This can be encoded as a Boolean formula 
xnf(φ)p ∧ ¬(p1 ∧ p2) where p1, p2 represent X ((¬T ail)Ua) and X ((¬T ail)U(¬a)) respectively. Assume the new state 
s1 = {(¬T ail)Ua, (¬T ail)Ub, (¬T ail)U(¬b), (¬T ail)Uc} is generated from the assignment of the SAT solver. Then CDLSC
checks whether s1 can reach a final state in 0 steps, i.e., xnf(

∧
s1)

p ∧ T ail is satisfiable. The answer is negative and we 
can add the UC u2 = {(¬T ail)Ub, (¬T ail)U(¬b)} to C[0] as well. Now to compute a next state of s0 that is not included 
in C[0], the encoded Boolean formula becomes xnf(φ)p ∧ ¬(p1 ∧ p2) ∧ ¬(p3 ∧ p4) where p3, p4 represent X ((¬T ail)Ub)

and X ((¬T ail)U(¬b)) respectively. Assume the new state s2 = {(¬T ail)Ua, (¬T ail)Ub, (¬T ail)Uc} is generated from the as-
signment of the SAT solver. Since xnf(

∧
s2)

p ∧ T ail is satisfiable, s2 is a final state and we conclude that the formula φ is 
satisfiable. An illustration to the states computation above is shown in Fig. 2. In principle, there are a total of 25 = 32 states 
in the transition system of φ, but CDLSC succeeds to find the answer by computing only 3 of them (including the initial 
state).

CDLSC also leverages the conflict sequence to accelerate checking unsatisfiable formulas. Like Bounded Model Checking 
(BMC) [28], CDLSC searches the model iteratively, but BMC invokes only one SAT call for each iteration, while CDLSC
invokes multiple SAT calls. CDLSC is more like an IC3-style algorithm, but achieves a much simpler implementation by 
using UC instead of the Minimal Inductive Core (MIC) like IC3 [25].

4. SAT-based explicit-state checking

Given an LTL f formula φ, we construct the LTL f transition system [21,27] leveraging SAT solvers and then check the 
satisfiability of the formula over its corresponding transition system.
4
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4.1. LTL f transition system

First, we show how one can consider LTL f formulas as propositional ones. This requires considering temporal subformu-
las as propositional atoms.

Definition 3 (Propositional atoms). For an LTL f formula φ, we define the set of propositional atoms of φ, i.e., PA(φ), as follows: 
(1) PA(φ) = {φ} if φ is an atom, Next, Until or Release formula; (2) PA(φ) = PA(ψ) if φ = (¬ψ); (3) PA(φ) = PA(φ1) ∪ PA(φ2)

if φ = (φ1 ∧ φ2) or (φ1 ∨ φ2).

Consider φ = (a ∧ ((¬T ail ∧ a)Ub) ∧ ¬(¬T ail ∧ X (a ∨ b))). We have PA(φ) = {a, T ail, ((¬T ail ∧ a)Ub), (X (a ∨ b))}. Intu-
itively, the propositional atoms are obtained by treating all temporal subformulas of φ as atoms. Thus, an LTL f formula φ
can be viewed as a propositional formula over PA(φ).

Definition 4. For an LTL f formula φ, let φp be φ considered as a propositional formula over PA(φ). A propositional assignment
A of φp , is in 2PA(φ) and satisfies A |= φp .

Consider the formula φ = (a ∨ (¬T ail ∧ a)Ub) ∧ (b ∨ (T ail ∨ c)Rd). From Definition 4, φp is (a ∨ p1) ∧ (b ∨ p2) where p1, 
p2 are two Boolean variables representing the truth values of (¬T ail ∧ a)Ub and (T ail ∨ c)Rd. Moreover, the set {p1, p2} is 
a propositional assignment of φp . In the rest of the paper, we do not introduce the intermediate variables and directly say 
{(¬T ail ∧ a)Ub, (T ail ∨ c)Rd} is a propositional assignment of φp . The following theorem shows the relationship between 
the propositional assignment of φp and the satisfaction of φ.

Theorem 2. For an LTL f formula φ and a finite trace ξ , ξ |= φ implies there exists a propositional assignment A of φp such that 
ξ |= ∧

A.

Proof. (⇒) Base case: when φ is a literal, Next, Until or Release formula, it is true since there is only one propositional 
assignment of φp , i.e. A = {φ}. Inductive step: if φ = φ1 ∧ φ2, ξ |= φ implies ξ |= φ1 and ξ |= φ2. By assumption hypothesis, 
there is Ai of φp

i (i = 1, 2) such that ξ |= ∧
Ai . Let A = A1 ∪ A2, and a consistent A, in which either ψ or ¬ψ cannot be, 

must exists (A may not be unique because A1 and A2 may not be unique). Otherwise, there is ψ ∈ A1 and ¬ψ ∈ A2 such 
that ξ cannot model 

∧
A1 and 

∧
A2 at the same time, which is a contradiction. So A is a propositional assignment of φp

and ξ |= ∧
A. The proof for φ = φ1 ∨ φ2 is similar. �

We now introduce the neXt Normal Form (XNF) of LTL f formulas, which is useful for the construction of the transition 
system.

Definition 5 (neXt normal form). An LTL f formula φ is in neXt Normal Form (XNF) if there are no Until or Release subformulas 
of φ in PA(φ).

For example, φ = ((¬T ail ∧ a)Ub) is not in XNF, while (b ∨ (¬T ail ∧ a ∧ (X ((¬T ail ∧ a)Ub)))) is. Every LTL f formula φ
has a linear-time conversion to an equivalent formula in XNF, which we denoted as xnf(φ).

Theorem 3. For an LTL f formula φ , there is a corresponding LTL f formula xnf(φ) in XNF such that φ ≡ xnf(φ). Furthermore, the cost 
of the conversion is linear.

Proof. First, xnf(φ) can be constructed recursively as follows: (1) xnf(φ) = φ, when φ is tt, ff, a literal or Xψ (note φ is 
N -free); (2) xnf(φ1 o φ2) = xnf(φ1) o xnf(φ2), where o is ∧ or ∨; (3) xnf(φ1Uφ2) = xnf(φ2) ∨ (xnf(φ1) ∧X (φ1Uφ2)); and (4) 
xnf(φ1Rφ2) = xnf(φ2) ∧ (xnf(φ1) ∨X (φ1Rφ2)); Since the construction is built on two expansion rules of Until and Release, 
and the expansion stops once the Until and Release are in the scope of Next, it preserves the equivalence φ ≡ xnf(φ). Since 
no expansion is applied to the X operator and the Next formulas are considered as atomic ones in XNF, the conversion cost 
is at most linear. �

Observe that when φ is in XNF, there can be only Next (no Until or Release) temporal formulas in the propositional 
assignment of φp . For φ = b ∨ (a ∧¬T ail ∧X (aUb)), the set A = {a, ¬b, ¬T ail, X (aUb)} is a propositional assignment of φp . 
Based on LTL f semantics, we can induce from A that if a finite trace ξ satisfying ξ [0] ⊇ {a, ¬b, ¬T ail} and ξ1 |= aUb, ξ |= φ

is true. This motivates us to construct the transition system for φ, in which {aUb} is a next state of {φ} and {a, ¬b, ¬T ail}
is the transition label between these two states.

Let φ be an LTL f formula and A be a propositional assignment of φp , we denote L(A) = {l|l ∈ A is a literal} and X(A) =
{θ |X θ ∈ A}. Now we define the transition system for an LTL f formula.
5
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Definition 6. Given an LTL f formula φ and its literal set L, let � = 2L . We define the transition system Tφ = (S, s0, T ) for 
φ, where

(1) S ⊆ 2cl(φ) is the set of states in which every state s except the initial one is obtained as described in (3);
(2) s0 = {φ} is the initial state;
(3) T : S × � → 2S is the transition relation, where s2 ∈ T (s1, σ) (σ ∈ �) holds iff there is a propositional assignment A of 

xnf(
∧

s1)
p such that σ ⊇ L(A) and s2 = X(A).

A run of Tφ on a finite trace ξ(|ξ | = n > 0) is a finite sequence s0, s1, . . . , sn such that s0 is the initial state and si+1 ∈
T (si, ξ [i]) holds for all 0 ≤ i < n.

We define the notation |r| for a run r, to represent the length of r, i.e., number of states in r. We say state s2 is reachable 
from state s1 in i(i ≥ 0) steps (resp. in up to i steps), if there is a run r on some finite trace ξ leading from s1 to s2 and 
|r| = i (resp. |r| ≤ i). In particular, we say s2 is a one-transition next state of s1 if s2 is reachable from s1 in 1 steps. Since 
a state s is a subset of cl(φ), which essentially is a formula with the form of 

∧
ψ∈s ψ , we mix the usage of the state and 

formula in the rest of the paper. That is, a state can be a formula of 
∧

ψ∈s ψ , and a formula φ can be a set of states, i.e., 
s ∈ φ iff s ⇒ φ.

Lemma 1. Let Tφ = (S, s0, T ) be the transition system of φ . Every state s ∈ S is reachable from the initial state s0.

Proof. Basically, for s ∈ T (s0, σ) (σ ∈ �), since there is a propositional assignment A of xnf(
∧

s0)
p such that σ ⊇ L(A) and 

s = X(A), s is reachable from s0 in one step. Inductively, assume s is reachable from s0 in k (k ≥ 1) steps. For s′ ∈ T (s, σ)

(σ ∈ �), similarly we have s′ is reachable from s in one step. As a result, s′ is reachable from s0 in k + 1 steps. �
Definition 7 (Final state). Let s be a state of a transition system Tφ . Then s is a final state of Tφ iff the Boolean formula 
T ail ∧ (xnf(s))p is satisfiable.

By introducing the concept of final state, we are able to check the satisfiability of the LTL f formula φ over Tφ .

Lemma 2. s is a final state of Tφ , iff there is a finite trace ξ with |ξ | = 1 such that ξ |= s.

Proof. From Definition 7, s is a final state iff there is a propositional assignment A of the Boolean formula T ail ∧ (xnf(s))p

and T ail ∈ A. Recall that every Next subformula in s is associated with ¬T ail, so T ail ∈ A holds iff no Next subformula is in 
A, and thus iff L(A) |= xnf(s)p holds. Let ξ = σ (σ ∈ �) such that σ ⊇ L(A), and obviously ξ |= s. �
Theorem 4. Let φ be an LTL f formula. Then φ is satisfiable iff there is a final state in Tφ .

Proof. (⇒) Since φ is satisfiable, there is a finite trace ξ |= φ. Assume |ξ | = n(n > 0). Based on Theorem 2, there is a 
propositional assignment A0 of xnf(φ)p such that ξ |= ∧

A0. And according to Definition 6, there is a transition s1 ∈ T (s0, σ0)

in Tφ where s0 = {φ}, σ0 ⊇ L(A0) and s1 = X(A0). Moreover, we have that ξ1 |= s1. Recursively, we can prove that for 
n > i ≥ 0, there is a transition si+1 ∈ T (si, σi) in Tφ such that σi ⊇ L(Ai), si+1 = X(Ai) for some propositional assignment 
Ai of xnf(si)

p , and ξi+1 |= si+1 holds. For i = n − 1, since |ξi | = 1 and ξi |= si , si is a final state according to Lemma 2, and it 
is reachable from s0 based on Lemma 1.

(⇐) Let s be a final state in Tφ , and it is reachable from the initial state s0 from Lemma 1. Assume a run 
r = s0, . . . , sn−1, s(n >= 0) (when n = 0, s = s0 is the initial state) of Tφ on ξ ′ = σ0, σ1, . . . , σn−1 leads from φ to s. Moreover 
according to Lemma 2, there is a finite trace ξ ′′ with |ξ ′′| = 1 such that ξ ′′ |= s. Let ξ = ξ ′ · ξ ′′ = σ0σ1, . . . σn(n ≥ 0) where 
ξ ′′ = σn , and now we prove that ξ |= φ. The proof can be achieved by induction from n to 0. Basically, (ξn = σn) |= s is 
obviously true. Inductively assume ξi |= si for n ≥ i ≥ 1, so ξi−1 = ξ [i − 1] · ξi satisfies ξ [i − 1] ⊇ L and ξi |= si for some 
si ∈ T (si−1, L) from the definition of Tφ , which means ξi−1 |= si−1. When i = 0, we prove that (ξ = ξ0) |= (s0 = φ). �

An intuitive solution from Theorem 4 to check the satisfiability of φ is to construct states of Tφ until (1) either a final 
state is found by Definition 7, meaning φ is satisfiable; or (2) all states in Tφ are generated but no final state can be found, 
meaning φ is unsatisfiable. This approach is simple and easy to implement, however, it does not perform well according to 
our preliminary experiments.

5. Conflict-driven LTL f satisfiability checking

In this section, we present a conflict-driven algorithm for LTL f satisfiability checking. The new algorithm is inspired by 
[27], where information of both satisfiability and unsatisfiability results of SAT solvers are used. The motivation is as follows: 
6
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s0start s1

s2

s3

s4

Fig. 3. An example transition system for the conflict sequence.

In Definition 7, if the Boolean formula T ail ∧ xnf(s)p is unsatisfiable, the SAT solver is able to provide a UC (Unsatisfiable 
Core) c such that c ⊆ s and T ail ∧ xnf(c)p is still unsatisfiable. It means that c represents a set of states that are not final 
states. By adding a new constraint ¬(

∧
ψ∈c Xψ), the SAT solver can provide a model (if exists) that avoids re-generation of 

those states in c, which accelerates the search of final states. More generally, we define the conflict sequence, which is used 
to maintain all information of UCs acquired during the checking process.

Definition 8 (Conflict sequence). Given an LTL f formula φ, a conflict sequence C for the transition system Tφ is a finite 
sequence of sets of states such that:

1. The initial state s0 = {φ} is in C[i] for 0 ≤ i < |C|;
2. Every state in C[0] is not a final state;
3. For every state s ∈ C[i + 1] (0 ≤ i < |C| − 1), all the one-transition next states of s are included in C[i].

We call each C[i] a frame, and i is the frame level.

In the definition, |C| represents the length of C and C[i] denotes the i-th element of C . Consider the transition sys-
tem shown in Fig. 3, in which s0 is the initial state and s4 is the final state. Based on Definition 8, the sequence 
C = {s0, s1, s2, s3}, {s0, s1}, {s0} is a conflict sequence. Notably, the conflict sequence for a transition system may not be 
unique. For the above example, the sequence {s0, s1}, {s0} is also a conflict sequence for the system. This suggests that the 
construction of a conflict sequence is algorithm-specific. Moreover, it is not hard to induce that every non-empty prefix 
of a conflict sequence is also a conflict sequence. For example, a prefix of C above, i.e., {s0, s1, s2, s3}, {s0, s1}, is a conflict 
sequence. As a result, a conflict sequence can be constructed iteratively, i.e., the elements can be generated (and updated) 
in order. Our new algorithm is motivated by these two observations.

An inherent property of conflict sequences is described in the following lemma.

Lemma 3. Let φ be an LTL f formula with a conflict sequence C for the transition system Tφ , then 
⋂

0≤ j≤i C[ j](0 ≤ i < |C|) represents 
a set of states that cannot reach a final state in up to i steps.

Proof. We first prove C[i](i ≥ 0) is a set of states that cannot reach a final state in i steps. Basically from Definition 8, C[0]
is a set of states that are not final states. Inductively, assume C[i](i ≥ 0) is a set of states that cannot reach a final state in 
i steps. From Item 3 of Definition 8, every state s ∈ C[i + 1] satisfies all its one-transition next states are in C[i], thus every 
state s ∈ C[i + 1] cannot reach a final state in i + 1 steps. Now since C[i](i ≥ 0) is a set of states that cannot reach a final 
state in i steps, 

⋂
0≤ j≤i C[ j] is a set of states that cannot reach a final state in up to i steps. �

We are able to utilize the conflict sequence to accelerate the satisfiability checking of LTL f formulas, using the theoretical 
foundations provided by Theorem 5 and 6 below.

Theorem 5. The LTL f formula φ is satisfiable iff there is a run r = s0, s1, . . . , sn(n ≥ 0) of Tφ such that (1) sn is a final state; and (2) 
si (0 ≤ i ≤ n) is not in C[n − i] for every conflict sequence C of Tφ with |C| > n − i.

Proof. (⇐) Since sn is a final state, φ is satisfiable according to Theorem 4. (⇒) Since φ is satisfiable, there is a finite trace 
ξ such that the corresponding run r of Tφ on ξ ends with a final state (according to Theorem 4). Let r be s0 −→ s1 −→ . . . sn
where sn is the final state. It holds that si (0 ≤ i ≤ n) is a state that can reach a final state in n − i steps. Moreover for every 
C of Tφ with |C| > n − i, C[n − i] (C[n − i] is meaningless when |C| ≤ n − i) represents a set of states that cannot reach a 
final state in n − i steps (from Lemma 3). As a result, it is true that si is not in C[n − i] if |C| > n − i. �

Theorem 5 suggests that to check whether a state s can reach a final state in i steps (i ≥ 1), finding a one-transition next 
state s′ of s that is not in C[i − 1] is necessary; as s′ ∈ C[i − 1] implies s′ cannot reach a final state in i − 1 steps (from the 
proof of Lemma 3). If all one-transition next states of s are in C[i − 1], s cannot reach a final state in i steps.
7
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Algorithm 1 Implementation of CDLSC.
Require: An LTL f formula φ.
Ensure: SAT or UNSAT.

1: if T ail ∧ xnf(φ)p is satisfiable then
2: return SAT;
3: end if
4: Set C[0] := get_uc();
5: Set f rame_level := 0;
6: while true do
7: Set C[ f rame_level + 1] := ∅;
8: if try_satisf y(φ, f rame_level) returns true then
9: return SAT;

10: end if
11: if inv_ f ound( f rame_level) returns true then
12: return UNSAT;
13: end if
14: f rame_level := f rame_level + 1;
15: end while

Theorem 6. The LTL f formula φ is unsatisfiable iff there is a conflict sequence C and i ≥ 0 such that 
⋂

0≤ j≤i C[ j] ⊆ C[i + 1].

Proof. (⇐) 
⋂

0≤ j≤i C[ j] ⊆ C[i + 1] is true implies that 
⋂

0≤ j≤i C[ j] = ⋂
0≤ j≤i+1 C[ j] is true. Also from Lemma 3 we know ⋂

0≤ j≤i C[ j] is a set of states that cannot reach a final state in up to i steps. Since φ ∈ C[i] is true for each i ≥ 0, φ is in ⋂
0≤ j≤i C[ j]. Moreover, 

⋂
0≤ j≤i C[ j] = ⋂

0≤ j≤i+1 C[ j] is true implies all reachable states from φ are included in 
⋂

0≤ j≤i C[ j]; 
otherwise there is a reachable state t from the initial state such that t /∈ ⋂

0≤ j≤i C[ j] but t ∈ ⋂
0≤ j≤i+1 C[ j], which becomes 

a contradiction. We have known all states in 
⋂

0≤ j≤i C[ j] are not final states, so φ is unsatisfiable.
(⇒) If φ is unsatisfiable, every state in Tφ is not a final state. Let S be a set of all states of Tφ . We now define a sequence 

of sets of states C as follows: C[0] = C[1] = S and |C| = 2. According to Definition 8, it is trivial to check that C is a conflict 
sequence. Moreover, 

⋂
0≤ j≤i C[ j] ⊆ C[i + 1] is obviously true for i = 0. The proof is done. �

Algorithm design. The algorithm, named CDLSC (Conflict-Driven LTL f Satisfiability Checking), constructs the transition 
system on-the-fly. The initial state s0 is fixed to be {φ} where φ is the input formula. From Definition 7, whether a state s is 
final is reducible to the satisfiability checking of the Boolean formula T ail ∧ xnf(s)p . If s0 is a final state, there is no need to 
maintain the conflict sequence in CDLSC, and the algorithm can return SAT immediately; Otherwise, the conflict sequence 
is maintained as follows.

• In CDLSC, every element of C is a set of sets of subformulas of the input formula φ. Formally, each C[i] (i ≥ 0) can be 
represented by the LTL f formula 

∨
c∈C[i]

∧
ψ∈c ψ where c is a set of subformulas of φ. We mix-use the notation C[i]

for the corresponding LTL f formula as well. Every state s satisfying s ⇒ C[i] is included in C[i].
• C is created iteratively. In each iteration i ≥ 0, C[i] is initialized as the empty set.
• To compute elements in C[0], we consider an existing state s (e.g., s0). If the Boolean formula T ail ∧ xnf(s)p is unsat-

isfiable, s is not a final state and can be added into C[0] from Item 2 of Definition 8. Moreover, CDLSC leverages the 
Unsatisfiable Core (UC) technique from the SAT community to add a set of states, all of which are not final and include 
s, to C[0]. This set of states, denoted as c, is also represented by a set of LTL f formulas and satisfies c ⊆ s.

• To compute elements in C[i +1] (i ≥ 0), we consider the Boolean formula (xnf(s) ∧¬X (C[i]))p , where X (C[i]) represents 
the LTL f formula 

∨
c∈C[i]

∧
ψ∈c X (ψ). The above Boolean formula is used to check whether there is a one-transition 

next state of s that is not in C[i]. If the formula is unsatisfiable, all the one-transition next states of s are in C[i], thus 
s can be added into C[i + 1] according to Item 3 of Definition 8. Similarly, we also utilize the UC technique to obtain a 
subset c of s, such that c represents a set of states that can be added into C[i + 1].

As shown above, every Boolean formula sent to a SAT solver has the form of (xnf(s) ∧ θ)p where s is a state and θ is 
either T ail or ¬X (C[i]). Since every state s consists of a set of LTL f formulas, the Boolean formula can be rewritten as 
α1 = (

∧
ψ∈s xnf(ψ) ∧ θ)p . Moreover, we introduce a new Boolean variable pψ for each ψ ∈ s, and re-encode the formula 

to be α2 = ∧
ψ∈s pψ ∧ (

∧
ψ∈s(xnf(ψ) ∨ ¬pψ) ∧ θ)p . α2 is satisfiable iff α1 is satisfiable, and A is an assignment of α2

iff A\{pψ |ψ ∈ s} is an assignment of α1. Sending α2 instead of α1 to the SAT solver that supports assumptions (e.g., 
Minisat [33]) enables the SAT solver to return the UC, which is a set of s, when α2 is unsatisfiable. For example, assume 
s = {ψ1, ψ2, ψ3} and α2 is sent to the SAT solver with {pψi |i ∈ {1, 2, 3}} being the assumptions. If the SAT solver returns 
unsatisfiable and the UC {pψ1 }, the set c = {ψ1}, which represents every state including ψ1, is the one to be added into the 
corresponding C[i]. We use the notation get_uc() for the above procedure.

The pseudo-code of CDLSC is shown in Algorithm 1. Lines 1-3 consider the case when the input formula φ is a final 
state itself. Otherwise, the first frame C[0] is initialized to getuc() (Line 4), and the current frame level is set to 0 (Line 5). 
After that, the loop body (Line 6-15) keeps updating the elements of C iteratively, until either the procedure try_satisf y
returns true, which means it found a model of φ, or the procedure inv_ f ound returns true, which is the implementation 
8
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Algorithm 2 Implementation of try_satisf y.
Require: φ: The formula is working on;

f rame_level: The frame level is working on.
Ensure: true or false.

1: Let ψ := ¬X (C[ f rame_level]);
2: while (ψ ∧ xnf(φ))p is satisfiable do
3: Let A be the model of (ψ ∧ xnf(φ))p ;
4: Let φ′ := X(A), i.e., be the next state of φ extracted from A;
5: if f rame_level == 0 then
6: if T ail ∧ xnf(φ′)p is satisfiable then
7: return true;
8: else
9: Let c := get_uc();

10: Add c into C[0];
11: end if
12: else
13: if try_satisf y(φ′, f rame_level − 1) is true then
14: return true;
15: end if
16: end if
17: Let ψ := ¬X (C[ f rame_level]);
18: end while
19: Let c := get_uc();
20: Add c into C[ f rame_level + 1];
21: return false;

of Theorem 6. The loop continues to create a new frame in C if neither of the procedures succeeds to return true. We call 
each run of the while loop body in Algorithm 1 an iteration.

The procedure try_satisf y updates C . Taking a formula φ and the current frame level, try_satisf y returns true iff a model 
of φ can be found, with the length of f rame_level + 1. As shown in Algorithm 2, try_satisf y is implemented recursively. 
Each time it checks whether a next state of the input φ, which belongs to a lower level (than the input f rame_level) 
frame can be found (Line 2). If such a new state φ′ is constructed, try_satisf y first checks whether φ′ is a final state when 
f rame_level is 0 and returns true if so. If φ′ is not a final state, a UC is extracted from the SAT solver and added to C[0]
(Line 5-11). If f rame_level is not 0, try_satisf y recursively checks whether a model of φ′ can be found with the length 
of f rame_level (Line 13-15). The while loop (Line 2-18) will terminate since ψ is continuously updated at Line 17. Finally, 
if the result is negative and such a state cannot be constructed, a UC is extracted from the SAT solver and added into 
C[ f rame_level + 1] (Line 19-20). Notably, even though the input of the SAT solver is (ψ ∧ xnf(φ))p at Line 2, get_uc only 
returns elements from φ.

Notably, Item 1 of Definition 8, i.e., {φ} ∈ C[i], is guaranteed for each i ≥ 0, as the original input formula of try_satisf y
is always φ (Line 8 in Algorithm 1) and there is some c (Line 20 in Algorithm 2) including {φ} that is added into C[i], if no 
model can be found in the current iteration.

The procedure inv_ f ound in Algorithm 1 implements Theorem 6 in a straightforward way: it reduces checking whether ⋂
0≤ j≤i C[ j] ⊆ C[i + 1] holds on some frame level i, to satisfiability checking of the Boolean formula 

∧
0≤ j≤i C[ j] ⇒ C[i + 1]. 

The implementation of inv_ f ound then simply enumerates such checking by varying i from 0 to |C| −1. Theorem 7 provides 
the theoretical guarantee that CDLSC always terminates correctly.

Lemma 4. After each iteration of CDLSC with no model found, the sequence C is a conflict sequence of Tφ for the transition system 
Tφ .

Proof. First, CDLSC sets C[0] = {φ} after checking T ail ∧ xnf(φ)p is unsatisfiable at Line 4 of Algorithm 1 and Line 10 
of Algorithm 2, which meets Item 2 of Definition 8. Secondly after each iteration i ≥ 0, try_satisf y guarantees that {φ}
is added into each C[i] if no model is found, which meets Item 1 of Definition 8. By enumerating Line 10 and 20 in 
try_satisf y (Algorithm 2), we have that xnf(s) ∧ ¬X (C[i]) is unsatisfiable for s ∈ C[i + 1](0 ≤ i ≤ |C| − 1), which meets Item 
3 of Definition 8. So C is a conflict sequence after each iteration with no model found. �
Theorem 7. The CDLSC algorithm terminates with a correct result.

Proof. CDLSC runs iteratively, so CDLSC terminates iff either the procedure try_satisf y or inv_ f ound returns true for some 
iteration. From Lemma 4, C is a conflict sequence after each iteration if no model found. After each iteration, try_satisf y
returns true iff a final state is found (Line 6-7) based on Theorem 5. As C is a conflict sequence after each iteration, 
inv_ f ound returns true if there is 0 ≤ i < |C| such that the Boolean formula 

∧
0≤ j≤i C[ j] ⇒ C[i +1] holds, which equivalently 

means 
⋂

0≤ j≤i C[ j] ⊆ C[i + 1] holds for some i. According to Theorem 6, φ is thus unsatisfiable. On the other hand, φ is 
unsatisfiable can imply there is a conflict sequence C such that 

∧
0≤ j≤i C[ j] ⇒ C[i + 1] holds for some i > 0, due to the fact 
9
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that the number of states in the transition system is finite. Therefore, inv_ f ound can eventually return true. As a result, 
there is always such an iteration, after which CDLSC can terminate and terminate correctly. �

CDLSC is a heuristic algorithm for LTL f satisfiability checking so it does not improve the lower or upper bound of the 
problem in theory. That means, the complexity of LTL f satisfiability preserves to be PSPACE-complete [2] even the problem 
is solved by CDLSC. As a result, CDLSC may construct at most 2n states of the transition system for a given LTL f formula 
with size n. Since each state of the transition system and element of the conflict sequence are computed via a SAT call,
CDLSC can invoke more than 2n SAT calls in the worst case to check the satisfiability of a formula with size n. Also the 
states generated in CDLSC are stored explicitly, the actual space used for the algorithm can be at worst exponential to the 
size of the input formula size. Compared to extant LTL f satisfiability algorithms, CDLSC has to invoke a massive number of 
SAT calls, considering that each SAT call requires an NP-complete complexity. However, those cost can successfully pay back 
thanks to the power of modern SAT solvers and the efficiency of on-the-fly checking as well as invariant finding, according 
to our experimental evaluation below.

We work through CDLSC by reusing the satisfiable instance φ = (¬T ail)Ua ∧(¬T ail)U(¬a) ∧(¬T ail)Ub ∧(¬T ail)U(¬b) ∧
(¬T ail)Uc. First, CDLSC checks whether T ail ∧ xnf(φ)p is satisfiable (Line 1 of Algorithm 1). The answer is negative and 
{(¬T ail)Ua, (¬T ail)U(¬a)} is the returned UC, which is added into C[0] (Line 4 of Algorithm 1). Then, CDLSC tries to 
check whether xnf(φ)p ∧ ¬(p1 ∧ p2) is satisfiable (Line 2 of Algorithm 2), where p1, p2 represent X ((¬T ail)Ua) and 
X ((¬T ail)U(¬a)) respectively. Assume the new state φ′ = {(¬T ail)Ua, (¬T ail)Ub, (¬T ail)U(¬b), (¬T ail)Uc} is generated 
from the assignment of the SAT solver. Then CDLSC checks whether φ′ can reach a final state in 0 steps, i.e., xnf(φ′)p ∧ T ail
is satisfiable (Line 6 of Algorithm 2). The answer is negative and we can add the UC {(¬T ail)Ub, (¬T ail)U(¬b)} to C[0] as 
well (Line 10 of Algorithm 2). Now to compute a next state of φ that is not included in C[0], the encoded Boolean formula 
becomes xnf(φ)p ∧ ¬(p1 ∧ p2) ∧ ¬(p3 ∧ p4) where p3, p4 represent X ((¬T ail)Ub) and X ((¬T ail)U(¬b)) respectively (Line 
6 of Algorithm 2). Assume the new state φ′′ = {(¬T ail)Ua, (¬T ail)Ub, (¬T ail)Uc} is generated from the assignment of the 
SAT solver. Since xnf(φ′′)p ∧ T ail is satisfiable, φ′′ is a final state and we conclude that the formula φ is satisfiable (Line 7 of 
Algorithm 2). As discussed before, there are a total of 25 = 32 states in the transition system of φ, but CDLSC succeeds to 
find the answer by computing only 3 of them (including the initial state).

In the previous section, it has been shown how CDLSC accelerates the checking of satisfiable formulas in the previous 
section. For unsatisfiable instances, consider φ = (¬T ail)Ua ∧ (T ail)R¬a ∧ (¬T ail)Ub. CDLSC first checks that T ail ∧ xnf(φ)p

is unsatisfiable at Line 1 of Algorithm 1, where the SAT solver returns c = {(¬T ail)Ua, T ailR¬a} as the UC. So c is added 
into C[0] (Line 4 of Algorithm 1). Then CDLSC checks that (xnf(φ) ∧¬X (C[0]))p is still unsatisfiable (Line 2 of Algorithm 2), 
in which c = {(¬T ail)Ua, T ailR¬a} is still the UC. So c is added into C[1] as well (Line 20 of Algorithm 2). Since C[0] ⊆ C[1]
and according to Theorem 6, CDLSC terminates with the unsatisfiable result (Line 11 to Line 13 of Algorithm 1). In this 
case, CDLSC only visits one state for the whole checking process. For a more general instance like φ ∧ψ , where ψ is a large 
LTL f formula, checking by CDLSC enables to achieve a significantly improvement compared to the checking by traditional 
tableau approach.

Summarily, CDLSC is a conflict-driven on-the-fly satisfiability checking algorithm, which successfully leads to either an 
earlier finding of a satisfying model, or the faster termination with the unsatisfiable result.

6. Experimental evaluation

In this section, we introduce a comprehensive evaluation among different LTL f satisfiability checkers with a large amount 
of benchmark suits that are available so far, to the best of our knowledge.

6.1. Benchmark suits

Our extensive experimental evaluation, checking 9317 formulas, uses four classes of benchmark suits: 7442 LTL-as-LTL f
(since LTL formulas share the same syntax as LTL f ) that are originally collected in [34], 1700 LTL f -Specific benchmark suits, 
which are common LTL f patterns that are all satisfiable by finite traces (but not necessarily by infinite traces), 63 widely 
used LTL f patterns from NASA-Boeing [35] and 112 DECLARE benchmark suits that are from the business process manage-
ment dataset and used in a recent work [36]. We check both execution time and correctness; checking also correctness, as 
in [18], ensures we are comparing performance of tools finding the same results.

The LTL-as-LTL f benchmark suits consists of 7 different formula classes from different scenarios, i.e., the classes of acacia, 
alaska, anzu, forobots, rozier, schuppan and trp formulas. As an example, Table 1 shows the different patterns from the rozier
benchmark. Readers are referred to [34] for details of other benchmarks.

• Random Formulas generated as in [19], vary the number of variables {1, 2, 3}, formula length {5, . . . , 100}, and proba-
bility of choosing a temporal operator {0.3, 0.5, 0.7, 0.95} from the operator set {¬, ∨, ∧, X , U , R, G, F , GF}.

• Counter Formulas scale four, temporally complex patterns that describe large state spaces: n-bit binary counters for 
1 ≤ n ≤ 20 [18]. The four templates differ in variables and nesting of X ’s.

• Pattern Formulas encode eight scalable patterns (from [37], and are generated by code from [18]) scaling to n = 100.
10
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Table 1
LTL-as-LTL f benchmark suits: the de facto standard benchmark suite for LTL satisfiability checking can also be 
used for LTL f satisfiability.

Name LTL f Formalization Answer

Random 500 formulas per set: {V ars ∈ {1 . . . 3}, length ∈ {5 . . . 100}} varies
Counter n bit counter, 2 vars, no carry unsat
CounterCarry n bit counter, 3 vars, with carry unsat
CounterLinear formulates linearly instead of quadratically unsat
CounterCarryLinear n bit counter, 3 vars, with carry and linear subformulas unsat
S(n)

∧n
i=1 �pi sat

E(n)
∧n

i=1 �pi sat
Q (n)

∧
(�pi ∨ �pi+1) sat

U (n) (. . . (p1 U p2) U . . .) U pn sat
U2(n) p1 U (p2 U (. . . pn−1 U pn) . . .) sat
C1(n)

∨n
i=1 ��pi sat

C2(n)
∧n

i=1 ��pi sat
R(n)

∧n
i=1(��pi ∨ ��pi+1) sat

The LTL f -Specific benchmark suits, whose description are shown in Table 2, consist of the following patterns.

• Random Conjunction formulas combine 19 common LTL f formulas from [17,38] (see the first 19 patterns in Table 2) 
as random conjunctions in the style of [39] in two sets of 500 formulas:
– 20 variables, varying the number of conjuncts in {10, 30, 50, 70, 100}. For each number of conjuncts, we generate 100 

formulas;
– 50 conjuncts, varying the number of variables in {10, 30, 50, 70, 100}. For each number of variables, we generate 100 

formulas.
• Pattern Formulas 7 scalable patterns (see the last 7 patterns in Table 2) inspired by [40] up to length 100. The total 

number of generated formulas is 700.

In addition to those described above, we introduce two more kinds of benchmark suits from the industry, whose instance 
lengths are normally larger than those from LTL-as-LTL f and LTL f -specific benchmarks.

• The NASA-Boeing benchmark suits consist of 63 in total real-world LTL f specifications in which
– 49 LTL f specifications used for designing Boeing AIR 6110 wheelbraking system [42]; and
– 14 LTL f specifications used for designing NASA NextGen air traffic control (ATC) system [43].

• The DECLARE benchmark suits consists of a total of 112 LTL f patterns that are widely used in the business process 
management, as shown in [36].

Based on our checking results from all testing solvers, the NASA-Boeing and DECLARE benchmark suits contain only satisfi-
able formulas.

6.2. Experimental setup

We implement CDLSC in the tool aaltaf 3 and use Minisat 2.2.0 [33] as the SAT engine. According to Algorithm 1 and 
2, our tool aaltaf enables to use the SAT solver in an incremental way. We compare it with two extant LTL f satisfiability 
solvers: Aalta-finite [21] and LTL2SAT [29]. Notably, LTL2SAT utilizes Aalta-finite as the heuristic engine dedicated for LTL f
formulas. As a result, we consider both the LTL2SAT performances with and without Aalta-finite enabled. We also compared 
with the state-of-art LTL solver Aalta-infinite [27], using the LTL f -to-LTL satisfiability-preserving reduction described in [2]. 
As LTL satisfiability checking is reducible to model checking, as described in [18], we also compared with this reduction, 
using nuXmv 1.1.1 with the K-LIVE back-end [23], as an LTL f satisfiability checker. Aalta-finite, Aalta-infinite and aaltaf are 
ran with their default parameters. LTL2SAT is written in Java and the command to run the tool is “java -jar LTL2SAT.jar -t 
time formula”, where “time” is the running timeout and “formula” is the LTL f formula to be checked. In particular, LTL2SAT 
also provides the “-u” option to disable the invoke of Aalta-finite. To run K-LIVE in nuXmv, we utilize the following (nuXmv) 
commands:

read_model
flatten_hierarchy
encode_variables
build_boolean_model
check_ltlspec_klive -d
quit

3 https://github .com /lijwen2748 /aaltaf.
11
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Table 2
LTL f -Specific Benchmark suits: formulas specifically designed for LT L f from previous works, adapted to be benchmark suits for our experiments. To create 
benchmark suits from Declare Templates, we substituted variables for branches, then created formula-generating scripts. We choose these as benchmark 
suits because a) they are common patterns; b) they are all satisfiable in LT L f (but not necessarily LTL), allowing us to check correctness of sat/unsat 
results.

Name LTL f Formalization Description Answer

Declare Patterns From [17,38] sat*

Existence �a a must be executed at least once sat*
Absence 2 ¬�(a ∧ �a) a can be executed at most once sat*
Choice �a ∨ �b a or b must be executed sat*
Exclusive Choice (�a ∨ �b) ∧ ¬(�a ∧ �b) Either a or b must be executed, but not both sat*
Resp. existence �a → �b If a is executed, then b must be executed as well sat*
Coexistence (�a → �b) ∧ (�b → �a) Either a and b are both executed, or none of them 

is executed
sat*

Response �(a → �b) Every time a is executed, b must be executed 
afterwards

sat*

Precedence ¬bWa b can be executed only if a has been executed 
before

sat*

Succession �(a → �b) ∧ (¬bWa) b must be executed after a, and a must precede b sat*
Alt. Response �(a → X (¬aUb)) Every a must be followed by b, without any other b

in between
sat*

Alt. Precedence (¬bWa) ∧ �(b → X (¬bWa)) Every b must be preceded by a, without any other 
b in between

sat*

Alt. Succession �(a → X (¬aUb)) ∧ (¬bWa) ∧ �(b → X (¬Wa)) Combination of alternate response and alternate 
precedence

sat*

Chain Response �(a → Xb) If a is executed then b must be executed next sat*
Chain Precedence �(Xb → a) Task b can be executed only immediately after a sat*
Chain Succession �(a ↔ Xb) Tasks a and b must be executed next to each other sat*
Not Coexistence ¬(�a ∧ �b) Only one among tasks a and b can be executed, but 

not both
sat*

Neg. Succession �(a → ¬�b) Task a cannot be followed by b, and b cannot be 
preceded by a

sat*

Neg. Chain Succession �(a ↔ X¬b) Tasks a and b cannot be executed next to each 
other

sat*

End �(a ∧ ¬X (a ∨ ¬a)) a occurs last; translated to LT L f from [41] sat*

Declare Templates formula-generating code inspired by constraints 
from [40]

sat*

RespondedExistence (n) �x → � (∨n
i=1 yi

)
sat*

Response (n) � (
x → � (∨n

i=1 yi
))

sat*
AlternateResponse(n) � (

x → X
(¬xU

∨n
i=1 yi

))
sat*

ChainResponse(n) � (
x → X

(∨n
i=1 yi

))
sat*

Precedence(n) (¬x)W
(∨n

i=1 yi
)

sat*
AlternatePrecedence(n) Precedence(n) ∧ �(x → X Precedence(n)) sat*
ChainPrecedence(n) � (

(X x) → (∨n
i=1 yi

))
sat*

We ran the experiments on a RedHat 6.0 cluster with 2304 processor cores in 192 nodes (12 processor cores per node), 
running at 2.83 GHz with 48 GB of RAM per node. Each tool executed on a dedicated node with a 8 GB memory and 
timeout of 1 hour, measuring execution time with Unix time. Those timeout, out of memory or running-error test cases 
will be assigned a penalty of 1 hour. We check the correctness by comparing the results from different solvers and it turns 
out the results from all solvers are consistent excluding those timeouts.

All artifacts for enabling reproducibility, including benchmark formulas and their generators, are available from the paper 
website at https://drive .google .com /open ?id =1eOYGvm3C8sQ -9iyfZ8qx42K54hgrFNTC.

6.3. Results

Fig. 4 shows the results for LTL f satisfiability checking on LTL-as-LTL f benchmark suits. In summary, CDLSC outperforms 
all other approaches. CDLSC performs best with a total time cost of 931 minutes, while K-LIVE in nuXmv performs the 
second-best with the total time cost of 1158 minutes. CDLSC checks the LTL f formula directly, while K-LIVE must take the 
input of the LTL formula translated from the LTL f formula. As a result, KLIVE may take extra cost, e.g., finding a satisfying 
lasso for the model, to the satisfiability checking. Meanwhile, CDLSC can benefit from the heuristics dedicated for LTL f
that are proposed in [21]. Compared to the results shown in [31], nuXmv is able to decrease the performance gap between
CDLSC and K-LIVE. That is because we extend the running timeout from 1 minute to 1 hour, which makes nuXmv solves 
more instances but no change for CDLSC. This phenomenon indicates that nuXmv has a better scalable performance than 
our implementation aaltaf. However, it should not be surprising due to the fact that the nuXmv is a mature software 
which has been developing for decades. Also, Aalta-infinite for LTL f does not perform better than model checking, using 
K-LIVE for, in contrast to the results for LTL in [27]. We conjecture that, since Aalta-infinite is a dedicated solver for LTL 
12
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Table 3
A summary of the experimental results on different classes in LTL-as-LTL f benchmark suits. Each cell of the table has the format of 〈n/t〉, where n represents 
the number of unsolved instances within 1 hour and t means the corresponding time cost (seconds).

Number Aalta-infinite Aalta-finite LTL2SAT nuXmv CDLSC CDLSC without heuristics

acacia 140 1/3665 0/1 62/225857 0/35 0/1 0/433
alaska 280 2/7573 0/2 86/315354 0/306 3/10806 7/32606
anzu 222 0/48 106/389365 88/322816 0/890 4/14495 4/20435
rozier 4640 74/271749 33/120345 220/6027477 8/30347 0/85 10/36795
schuppan 144 37/135303 2/7371 0/1311 10/43904 8/29453 20/72632
trp 1940 2/8441 113/412790 0/2324 0/1181 0/64 33/133527
forobots 76 0/2 38/139080 0/592 0/17 0/1 0/213
Total 7442 116/426781 292/1068954 456/6895731 18/69480 15/55905 74/296641

Fig. 4. Result for LTL f Satisfiability Checking on LTL-as-LTL f benchmark suits. The X axis represents the number of benchmark suits, and the Y axis is the 
accumulated checking time (minute).

formulas, its LTL-specific heuristics do not apply well to LTL f formulas. Finally, the performance of LTL2SAT (with and 
without Aalta-finite) is highly tied to its performance for unsatisfiability checking as most of the timeout cases for LTL2SAT 
are unsatisfiable. For Aalta-finite, its performance is restricted by the heavy cost of the Tableau Construction.

Since the LTL-as-LTL f benchmark suits consist of a diverse of different classes, we summarize the corresponding statis-
tics for each class in Table 3. Although CDLSC has the best overall performance, different solvers can perform best on 
certain classes. For example, Aalta-infinite performs best on the “anzu” class and Aalta-finite performs best on the “acacia” 
and “alaska” classes. LTL2SAT (with Aalta-finite) does not perform best on any class listed in the table, and LTL2SAT without 
Aalta-finite performs even worse than LTL2SAT (with Aalta-finite) on the LTL-as-LTL f benchmarks, whose results are omit-
ted in Table 3. The question on how to conduct a portfolio solver that can perform best on all kinds of classes thus raises 
up, which we leave for future work. Also, CDLSC integrates the heuristics presented in Aalta-finite, and Table 3 shows the 
performance on CDLSC with and without heuristics. As shown in the table, the heuristics in our previous work plays an 
important role on the satisfiability checking: CDLSC with heuristics solves 53 more instances than CDLSC without heuris-
tics. However with no doubt, the new SAT-based approach in CDLSC accelerates the satisfiability checking significantly as 
well, from the results comparison between CDLSC and Aalta-finite.

Fig. 5 and Fig. 6 show the comparing results on satisfiable and unsatisfiable LTL-as-LTL f benchmark suits respectively. 
LTL2SAT with and without Aalta-finite produce the best performance on the satisfiable formulas, though CDLSC and nuXmv 
perform similarly. Recall that LTL2SAT implements a Bounded-Model-Checking (BMC) [28] style for checking; it can perform 
best on the satisfiable benchmark suits since BMC is shown superior to finding bugs (checking satisfiability) [44]. The 
conjecture that LTL2SAT integrates Aalta-finite is to help to solve unsatisfiable formulas, which is confirmed from Fig. 6
that the performance of LTL2SAT is better than LTL2SAT without Aalta. We show more evidences below. Obviously, CDLSC
performs best on checking unsatisfiable formulas, followed by nuXmv and Aalta-infinite. As a result, CDLSC performs best 
on unsatisfiable and almost best on satisfiable formulas, which make it the best approach on the overall performance.

A case-to-case performance comparison between LTL2SAT with and without Aalta on satisfiable and unsatisfiable for-
mulas is shown in Fig. 7 and Fig. 8 respectively. These two figures show the clearer evidences that while LTL2SAT without 
Aalta-finite performs better than LTL2SAT (with Aalta-finite) on checking satisfiable formulas, LTL2SAT (with Aalta-finite) 
does have a better performance on checking unsatisfiable formulas than LTL2SAT without Aalta-finite. The results in these 
13
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Fig. 5. Result for LTL f Satisfiability Checking on Satisfiable LTL-as-LTL f benchmark suits. The X axis represents the number of benchmark suits, and the Y 
axis is the accumulated checking time (minute).

Fig. 6. Result for LTL f Satisfiability Checking on Unsatisfiable LTL-as-LTL f benchmark suits. The X axis represents the number of benchmark suits, and the 
Y axis is the accumulated checking time (minute).

two figures explain the consistency between the performance of LTL2SAT and the theoretic foundation behind the tool: the 
inherent BMC-style checking strategy enables the tool to perform well on satisfiable formulas, but meanwhile, additional 
heuristics (e.g. from Aalta-finite) have to be imported to accelerate the tool’s checking on unsatisfiable formulas.4

Table 4 shows the results for LTL f -specific experiments. Column 1 shows the types of LTL f formulas under test and 
Columns 2-7 show the checking times by formula types in seconds. The dedicated LTL f solvers perform extremely fast on 
the seven scalable pattern formulas (Column 3 and 7), because their heuristics work well on these patterns. For the difficult 
random conjunction benchmark suits, which mainly consists of unsatisfiable formulas, CDLSC still outperforms all other 
solvers. Notably, CDLSC solves all instances in the LTL f -specific benchmarks.

Finally, we test more satisfiable benchmark suits to evaluate the performance among different solvers. Fig. 9 shows the 
results on checking the 63 satisfiable NASA-Boeing benchmark suits. CDLSC performs best while LTL2SAT without Aalta 
and Aalta-infinite perform slightly less than CDLSC on checking these challenging benchmark suits. These three approaches 
outperform all others. Fig. 10 shows the results on checking the 112 satisfiable DECLARE benchmark suits. Surprisingly, 

4 It is well known that BMC is good at checking satisfiability but not at checking unsatisfiability.
14
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Fig. 7. Comparison between LTL2SAT with and without Aalta-finite on Satisfiable LTL-as-LTL f benchmark suits. The X axis represents the number of bench-
mark suits, and the Y axis is the checking time (second).

Fig. 8. Comparison between LTL2SAT with and without Aalta-finite on Unsatisfiable LTL-as-LTL f benchmark suits. The X axis represents the number of 
benchmark suits, and the Y axis is the checking time (second).

Table 4
Results for LTL f Satisfiability Checking on LT L f -specific benchmark suits. The time unit for the cost of each pattern is second.

Type NuXmv Aalta-finite Aalta-infinite LTL2SAT LTL2SAT without Aalta-finite CDLSC

Alternate Response 134 1 48 123 76 3
Alternate Precedence 154 3 70 380 54 4
Chain Precedence 127 2 45 83 43 2
Chain Response 79 1 41 49 54 2
Precedence 132 2 14 124 67 1
Responded Existence 130 1 14 327 111 1
Response 155 1 41 53 54 2
Random Conjunction 1669 19564 4443 20477 3897 115
15
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Fig. 9. Result for LTL f Satisfiability Checking on the NASA-Boeing benchmark suits. The X axis represents the number of benchmark suits, and the Y axis is 
the accumulated checking time (minute).

Fig. 10. Result for LTL f Satisfiability Checking on the DECLARE benchmark suits [36]. The X axis represents the number of benchmark suits, and the Y axis 
is the accumulated checking time (minute).

nuXmv performs best on checking these satisfiable benchmark suits, followed by LTL2SAT without Aalta and CDLSC. It 
indicates that there is not such an approach that can dominate all satisfiable benchmark suits. So far, we can find only one 
unsatisfiable benchmark (from LTL-as-LTL f ) and CDLSC performs best on these unsatisfiable formulas.

7. Discussion and concluding remarks

There are two ways to apply Bounded Model Checking (BMC) to LTL f satisfiability checking. The first one is to check the 
satisfiability of the LTL formula from the input LTL f formula. Since [27] showed this approach performs worse than K-LIVE,
CDLSC outperforming K-LIVE implies that CDLSC also outperforms BMC. The second approach is to check the satisfiability 
of the LTL f formula φ directly, by unrolling φ iteratively. In the worst case, BMC can terminate (with UNSAT) once the 
iteration reaches the upper bound. This is exactly what is implemented in LTL2SAT [29].

Our experiments demonstrate that CDLSC outperforms Aalta-infinite and K-LIVE, which are designed for LTL satisfiability 
checking, showing the advantage of a dedicated algorithm for LTL f . Notably, CDLSC maintains a conflict sequence, which is 
similar to the state-of-art model checking technique IC3 [25]. CDLSC does not require the conflict sequence to be monotone, 
and simply use the UC from SAT solvers to update the sequence. Meanwhile, IC3 requires the sequence to be strictly 
16
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monotone, and has to compute its dedicated MIC (Minimal Inductive Core) to update the sequence. In fact, CDLSC is 
motivated from a more recent model checking algorithm CAR (Complementary Approximate Reachability) [45]. We conclude 
that CDLSC outperforms other existing approaches for LTL f satisfiability checking.
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Appendix A

A.1. Proof of Theorem 1

We first introduce the following lemmas that are useful for the proof.

Lemma 5. If tnf(φ) is satisfiable, there is a non-empty finite trace ξ such that ¬T ail ∈ ξ [i] for 0 ≤ i < |ξ | − 1, T ail ∈ ξ [|ξ | − 1] and 
ξ |= tnf(φ).

Proof. Since tnf(φ) is satisfiable, there is a non-empty finite trace ξ ′ such that ξ ′ |= tnf(φ). Recall that tnf(φ) has the form 
of t(φ) ∧ F T ail, so ξ ′ |= tnf(φ) implies ξ ′ |= t(φ) and there is 0 ≤ k < |ξ ′| such that T ail ∈ ξ ′[k] and T ail /∈ ξ ′[ j] for every 
j < k. Actually, we may set k to be the position where T ail first appears in ξ ′ . We define tp(ξ ′) = ξ ′[0]ξ ′[1] . . . ξ ′[k], and 
first prove that ξ ′ |= t(φ) implies tp(ξ ′) |= t(φ). Let ξ = tp(ξ ′), and we prove by induction over the type of φ that ξ |= t(φ).

1. If φ = tt, then t(φ) = tt and of course ξ |= t(φ);
2. If φ = l is a literal, then t(φ) = l and ξ ′ |= t(φ) implies l ∈ ξ ′[0] = ξ [0]. Therefore, ξ |= t(φ);
3. If φ = φ1 ∧ φ2, then t(φ) = t(φ1) ∧ t(φ2), and ξ ′ |= t(φ) implies ξ ′ |= t(φ1) and ξ ′ |= t(φ2). By hypothesis assumption, 

ξ ′ |= t(φ1) implies ξ |= t(φ1) and ξ ′ |= t(φ2) implies ξ |= t(φ2). So ξ |= t(φ) is true. If φ = φ1 ∨ φ2, the proof is similar;
4. If φ = Xψ , then t(φ) = ¬T ail ∧ X (t(ψ)), and ξ ′ |= t(φ) implies that T ail /∈ ξ ′[0] and ξ ′

1 |= t(ψ). Let ξ1 = tp(ξ ′
1). By 

hypothesis assumption, ξ ′
1 |= t(ψ) implies ξ1 |= t(ψ) is true. Moreover, because T ail /∈ ξ ′[0], ξ = tp(ξ ′) = ξ ′[0] · tp(ξ ′

1) =
ξ ′[0] · ξ1 from its definition. As a result, ξ |= t(φ) is true;

5. If φ = Nψ , then t(φ) = T ail ∨ X (t(ψ)) = T ail ∨ (¬T ail ∧ X (t(ψ))), and ξ ′ |= t(φ) implies that T ail ∈ ξ ′[0] or ξ ′ |=
¬T ail ∧X (t(ψ)). In the first case, ξ = ξ ′[0] and obviously ξ |= t(φ). For the second case, the proof is the same as that 
if φ =Xψ ;

6. If φ = φ1Uφ2, then t(φ) = (¬T ail ∧ t(φ1))Ut(φ2), and ξ ′ |= t(φ) implies that there is 0 ≤ i < |ξ ′| such that ξ ′
i |= t(φ2)

and for every 0 ≤ j < i it holds ξ ′
j |= ¬T ail ∧ t(φ1). As a result, we have that ξ = tp(ξ ′) = ξ ′[0] . . . ξ ′[i − 1] · tp(ξ ′

i ), and 
thus ξi = tp(ξ ′

i ) and ξ j = ξ ′[ j] . . . ξ ′[i − 1] · tp(ξ ′
i ) = tp(ξ ′

j). By hypothesis assumption, ξ ′
i |= t(φ2) implies ξi |= t(φ2) and 

ξ ′
j |= ¬T ail ∧ t(φ1) implies ξ j |= ¬T ail ∧ t(φ1). As a result, ξ |= t(φ) is true;

7. If φ = φ1Rφ2, then t(φ) = (T ail ∨ t(φ1))Rt(φ2), and ξ ′ |= t(φ) implies that for all 0 ≤ i < |ξ ′| it holds that, ξ ′
i |=

t(φ2) or there is 0 ≤ j < i such that ξ ′
j |= T ail ∨ t(φ1). Since ξ = tp(ξ ′), so ξi = tp(ξ ′

i ) for 0 ≤ i < |ξ |. By hypothesis 
assumption, ξ ′

i |= t(φ2) implies ξi |= t(φ2) for every 0 ≤ i < |ξ | − 1. Moreover, it is true that T ail ∈ ξ [|ξ | − 1], which 
implies ξ [|ξ | − 1] |= T ail ∨ t(φ1). Therefore, we have that ξ |= t(φ).

Because tp(ξ ′) |= t(φ) is true, and tp(ξ ′) |=F T ail is obviously true, we prove finally that ξ = tp(ξ ′) |= tnf(φ). �
Lemma 6. Let ξ, ξ ′ be two non-empty finite traces satisfying |ξ | = |ξ ′| and ξ ′[i] = ξ [i] for 0 ≤ i < |ξ | − 1 as well as ξ ′[|ξ | − 1] =
ξ [|ξ | − 1] ∪ {T ail}. Then ξ |= φ iff ξ ′ |= tnf(φ).

Proof. We prove by induction over the type of φ.

1. If φ is tt, ff or a literal l, obviously ξ |= φ holds iff ξ ′ |= tnf(φ) holds;
2. If φ = Xψ , then ξ |= φ holds iff |ξ | > 1 and ξ1 |= ψ holds. By hypothesis assumption, ξ1 |= ψ holds iff ξ ′

1 |= tnf(ψ)

holds, and ξ ′
1 |= tnf(ψ) holds iff ξ ′ |= ¬T ail ∧X (tnf(ψ)) holds (because ¬T ail ∈ ξ ′[0]). As a result, we have the following 

equations:
17
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ξ |= Xψ

⇔ ξ ′ |= ¬T ail ∧X (tnf(ψ))

⇔ ξ ′ |= ¬T ail ∧X (t(ψ) ∧FT ail)

⇔ ξ ′ |= ¬T ail ∧X (t(ψ)) ∧FT ail

Since tnf(φ) = ¬T ail ∧X (t(ψ)) ∧F T ail, so ξ |= φ iff ξ ′ |= tnf(φ) is true;
3. If φ =Nψ , then ξ |= φ iff |ξ | = 1 or |ξ | > 1 and ξ1 |= ψ holds. We only prove the case when |ξ | = 1 and the other case 

has been proved above. Due to the facts that |ξ | = 1, the construction of ξ ′ , and tnf(φ) = (T ail ∨ tnf(X (ψ))) ∧F T ail, it 
is true that ξ |= φ holds iff ξ ′ |= tnf(φ) holds;

4. If φ = φ1 ∧ φ2, then ξ |= φ holds iff both ξ |= φ1 and ξ |= φ2 hold. By hypothesis assumption, we have ξ |= φ1 holds 
iff ξ ′ |= tnf(φ1) holds, and ξ |= φ2 holds iff ξ ′ |= tnf(φ2) holds. As a result, ξ |= φ holds iff ξ ′ |= tnf(φ1) ∧ tnf(φ2) =
t(φ1) ∧ t(φ2) ∧F T ail = t(φ1 ∧ φ2) ∧F T ail = tnf(φ1 ∧ φ2) holds;

5. If φ = φ1 ∨ φ2, then ξ |= φ holds iff ξ |= φ1 or ξ |= φ2 holds. By hypothesis assumption, we have ξ |= φ1 holds iff 
ξ ′ |= tnf(φ1) holds, or ξ |= φ2 holds iff ξ ′ |= tnf(φ2) holds. As a result, ξ |= φ holds iff ξ ′ |= tnf(φ1) ∨ tnf(φ2) = (t(φ1) ∨
t(φ2)) ∧F T ail = t(φ1 ∨ φ2) ∧F T ail = tnf(φ1 ∨ φ2) holds;

6. If φ = φ1Uφ2, then ξ |= φ holds iff there exists 0 ≤ i < |ξ | such that ξi |= φ2, and for every 0 ≤ j < i it holds that 
ξ j |= φ1. By hypothesis assumption, ξi |= φ2 holds iff ξ ′

i |= tnf(φ2) holds, and moreover, ξ j |= φ1 holds iff ξ ′
j |= tnf(φ1)

holds. Because of 0 ≤ j < i and 0 ≤ i < |ξ |, j does not equal to |ξ | − 1, which means ¬T ail ∈ ξ ′[ j]. As a result, ξ ′[ j] |=
¬T ail ∧ tnf(φ1). Therefore, ξ ′

i |= φ2 holds and for every 0 ≤ j < i, ξ ′
j |= ¬T ail ∧ tnf(φ1) is true, which means ξ ′ |= (¬T ail ∧

tnf(φ1))U tnf(φ2) is true. Finally, we have

ξ |= φ1Uφ2

⇔ ξ ′ |= (¬T ail ∧ tnf(φ1))U tnf(φ2)

⇔ ξ ′ |= (¬T ail ∧ t(φ1) ∧FT ail)U(t(φ2) ∧FT ail)

⇔ ξ ′ |= (¬T ail ∧ t(φ1))Ut(φ2) ∧FT ail

⇔ ξ ′ |= tnf(φ)

7. If φ = φ1Rφ2, then ξ |= φ holds iff for every 0 ≤ i < |ξ | it holds ξi |= φ2, or there exists 0 ≤ j ≤ i such that ξ j |= φ1

holds. By hypothesis assumption, ξi |= φ2 holds iff ξ ′
i |= tnf(φ2) holds, and, ξ j |= φ1 holds iff ξ ′

j |= tnf(φ1) holds. Therefore, 
it is true that ξ |= φ holds iff ξ ′ |= tnf(φ1)Rtnf(φ2) holds. Because of 0 ≤ j ≤ i and 0 ≤ i < |ξ |, so T ail ∈ ξ ′[ j] is true when 
j = |ξ ′| − 1. As a result, ξ ′

j |= T ail ∨ tnf(φ1). Therefore, ξ ′
i |= φ2 holds for every 0 ≤ i < |ξ ′|, or there exists 0 ≤ j ≤ i such 

that ξ ′
j |= T ail ∨ tnf(φ1) is true, which means ξ ′ |= (T ail ∨ tnf(φ1))Rtnf(φ2) is true. Finally, we have

ξ |= φ1Rφ2

⇔ ξ ′ |= tnf(φ1)Rtnf(φ2)

⇔ ξ ′ |= (t(φ1) ∧FT ail)R(t(φ2) ∧FT ail)

⇔ ξ ′ |= t(φ1)Rt(φ2) ∧FT ail

⇔ ξ ′ |= (T ail ∨ t(φ1))Rt(φ2) ∧FT ail

⇔ ξ ′ |= tnf(φ)

The proof is done. �
We are ready now to prove Theorem 1.

Proof. (⇒) If φ is satisfiable, there is a non-empty finite trace ξ such that ξ |= φ. From Lemma 6, we know that there is a 
corresponding finite trace ξ ′ satisfying |ξ | = |ξ ′| and ξ ′[i] = ξ [i] for 0 ≤ i < |ξ | − 1 as well as ξ ′[|ξ | − 1] = ξ [|ξ | − 1] ∪ {T ail}
such that ξ ′ |= tnf(φ). So tnf(φ) is satisfiable.

(⇐) If tnf(φ) is satisfiable, there is a finite trace ξ ′ satisfying T ail /∈ ξ ′[i] for 0 ≤ i < |ξ | − 1 and T ail ∈ ξ ′[|ξ | − 1] such 
that ξ ′ |= tnf(φ), from Lemma 5. Moreover, according to Lemma 6, there is a corresponding finite trace satisfying |ξ | = |ξ ′|
and ξ [i] = ξ ′[i] for 0 ≤ i < |ξ | − 1 as well as T ail /∈ ξ [|ξ | − 1] such that ξ |= φ. So φ is satisfiable. �
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