
MLTL Benchmark Generation
via Formula Progression

Jianwen Li(B) and Kristin Y. Rozier

Iowa State University, Ames, IA, USA
{jianwen,kyrozier}@iastate.edu

Abstract. Safe cyber-physical system operation requires runtime veri-
fication (RV), yet the burgeoning collection of RV technologies remain
comparatively untested due to a dearth of benchmarks with oracles
enabling objectively evaluating their performance. Mission-time LTL
(MLTL) adds integer temporal bounds to LTL to intuitively describe mis-
sions of such systems. An MLTL benchmark for runtime verification is a
3-tuple consisting of (1) an MLTL specification ϕ; (2) a set of finite input
streams representing propositional system variables (call this computa-
tion π) over the alphabet of ϕ; (3) an oracle stream of 〈v, t〉 pairs where
verdict v is the result (true or false) for time t of evaluating whether
πt |= ϕ (computation π at time t satisfies formula ϕ). We introduce
an algorithm for reliably generating MLTL benchmarks via formula pro-
gression. We prove its correctness, demonstrate it executes efficiently,
and show how to use it to generate a variety of useful patterns for the
evaluation and comparative analysis of RV tools.

1 Introduction

Runtime Verification (RV) provides the essential check that a system upholds its
requirements during execution. Tools performing online or stream-based verifica-
tion run on-board safety-critical systems, checking the current execution against
the system’s requirements in real time. RV is often expected, or even required,
on-board modern human-interactive systems as it provides the essential capa-
bility to detect, and possibly mitigate, failures that could cause harm to people,
property, or the environment. RV on-board an aircraft can provide the crucial
trigger to abandon a mission or switch to safe mode in the face of the failure of a
critical sensor. However it is essential that the RV tool be correct ; a false-positive
could trigger an abort unnecessarily and a false-negative would be equivalent to
not running RV at all.

RV requirements are frequently expressed in Mission-time LTL (MLTL) [11],
one of the many variations on Metric Temporal Logic [9], which has the syntax
of Linear Temporal Logic with the option of integer bounds on the temporal
operators. It provides the readability of LTL while assuming, when a different

Work supported by NASA ECF NNX16AR57G and NSF CAREER Award CNS-
1552934.

c© Springer Nature Switzerland AG 2018
C. Colombo and M. Leucker (Eds.): RV 2018, LNCS 11237, pp. 426–433, 2018.
https://doi.org/10.1007/978-3-030-03769-7_25

kyrozier@iastate.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03769-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-03769-7_25

MLTL Benchmark Generation via Formula Progression 427

duration is not specified, that all requirements must be upheld during the (a
priori known) length of a given mission, such as during the half-hour battery
life of an Unmanned Aerial System (UAS). Using integer bounds instead of real-
number or real-time bounds leads to more generic specifications that are adapt-
able to monitoring on different platforms (e.g., in software vs in hardware) with
different granularities of time (e.g., because monitoring on-board an embedded
system with more limited resources for storing the monitors may necessitate a
wider granularity of time to fit the monitor encodings). We choose MLTL because
it has been used for the Runtime Verification Benchmark Challenge [10] and in
many industrial case studies [5,8,11,13–16]. Many specifications from other case
studies, in logics such as MTL [1] and STL [7], can be represented in MLTL.

Arguably the biggest challenge facing the RV community today is the dearth
of benchmarks for checking the correctness of RV tools and comparatively ana-
lyzing them [12]. An RV benchmark has three parts: (a) an input stream or
computation π representing the values of the system variables over time; (b) an
MLTL requirement ϕ; (c) an oracle O, or output stream of tuples 〈v, t〉 where
v is the valuation of ϕ (true or false) at time t for all 0 ≤ t ≤ M where M is
the mission bound, or the number of time steps in the benchmark instance. The
oracle is crucially required to evaluate correctness of RV algorithms but checking
whether computation π satisfies requirement ϕ at each timestep in M is hard.
Therefore, we create RV benchmarks by generating an MLTL requirement ϕ and
deciding what pattern we’d like to see in our oracle (e.g., to achieve goals of
code coverage for the RV tool under test). We utilize a new algorithm based on
formula progression [3] over MLTL formulas to generate a π that satisfies ϕ at
each timestep accordingly.

The contributions of this paper include a definition of formula progression
for MLTL along with proofs of decomposibility and correctness. We design an RV
benchmark generation algorithm based on MLTL formula progression, argue for
its correctness, and show how to use it to generate different interesting bench-
mark patterns. Section 2 provides base definitions of MLTL semantics and bench-
marks. We define MLTL formula progression in Sect. 3 and use it for benchmark
generation algorithms in Sect. 4. Section 5 concludes.

2 Mission-Time Linear Temporal Logic (MLTL)

MLTL was first introduced in [11] as a variation on LTL with closed, finite integer
intervals on the temporal operators that translate to practical concepts, such as
mission bounds. A closed interval over naturals I = [a, b] (0 ≤ a ≤ b are natural
numbers) is a set of naturals {i | a ≤ i ≤ b}. We focus on bounded intervals such
that b < +∞. All MLTL intervals I are closed because every open or half-open
interval, e.g., in Metric Temporal Logic (MTL) [2], is reducible to an equivalent
closed bounded interval. For example, (1,2) = ∅, (1,3) = [2,2], (1,3] = [2,3], etc.
Let P be a set of atomic propositions, then the syntax of a formula in Mission-
Time LTL (abbreviated as MLTL) is:

ϕ ::= true | false | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUIϕ | ϕRIϕ,

kyrozier@iastate.edu

428 J. Li and K. Y. Rozier

where I is a bounded interval, and p ∈ P is an atom. We use the abbreviations
FIϕ for trueUIϕ, GIϕ for falseRIϕ, and F[1,1]ϕ for the equivalent of the LTL
formula Xϕ.

The semantics of MLTL formulas are interpreted over finite traces. Let π be
a finite trace in which every timestamp π[i : i ≥ 0] is over 2P , and |π| denotes
the length of π; |π| < +∞ because π is a finite trace. We use πi (where i ≥ 1)
to represent the prefix of π ending at timestamp i (excluding i), and πi (where
i ≥ 0) to represent the suffix of π starting from timestamp i (including i). Note
that πi = ε (empty trace) if i ≥ |π|. Let a, b : a ≤ b be two natural numbers;
we define that π models (satisfies) an MLTL formula ϕ, denoted as π |= ϕ, as
follows:

– π |= p iff p ∈ π[0];
– π |= ϕ1∨ϕ2 iff π |= ϕ1 or π |= ϕ2;

– π |= ¬ϕ iff π � |= ϕ;
– π |= ϕ1 ∧ϕ2 iff π |=ϕ1 and π |= ϕ2;

– π |= ϕ1U[a,b]ϕ2 iff |π| > a and, there exists i ∈ [a, b] such that πi |= ϕ2 and
for every j ∈ [a, b] : j < i, it holds that πj |= ϕ1;

– π |= ϕ1R[a,b]ϕ2 iff |π| ≤ a or for every i ∈ [a, b], either πi |= ϕ2 holds or
there exists j ∈ [a, b] s.t. πj |= ϕ1 and ∀i, a ≤ i ≤ j, πj |= ϕ2.

The Until and Release operators are interpreted slightly differently in MLTL
than in the traditional MTL-over-naturals1 [4]. In MTL-over-naturals, the sat-
isfaction of ϕ1UIϕ2 requires ϕ1 to hold from position 0 to the position where
ϕ2 holds (in I), while in MLTL ϕ1 is only required to hold within the inter-
val I, before the time ϕ2 holds. The same applies to the Release operator. From
our experience in writing specifications, cf. [5,11,13–15], this adjustment is more
user-friendly. Meanwhile, it is not hard to see that MLTL is as expressive as MTL-
over-naturals: the formula ϕ1U[a,b]ϕ2 in MTL-over-naturals can be represented
as (G[0,a−1]ϕ1) ∧ (ϕ1U[a,b]ϕ2) in MLTL; ϕ1U[a,b]ϕ2 in MLTL can be represented
as F[a,a](ϕ1U[0,b−a]ϕ2) in MTL-over-naturals.

MLTLBenchmarks. One benchmark instance is a triple 〈π, ϕ,O〉, where π is a
finite trace of length |π| over (2Σ)|π| representing the propositional variable
input streams, ϕ is the MLTL requirement being monitored, and O is an oracle,
itself a stream of pairs 〈v, t〉 such that verdict v = true if πt |= ϕ and v = false
if not. An RV tool takes as input the formula ϕ and the finite trace set π and
uses ϕ to generate a monitor; O is required to verify that the monitor operates
correctly.

3 Formula Progression on MLTL

We introduce the concept of formula progression [3] over MLTL formulas.

Definition 1. Given an MLTL formula ϕ and a finite trace π, let ϕ′ be one
formula progression of ϕ. We define the progression function prog(ϕ, π) = ϕ′

recursively:
1 In this paper, MTL-over-naturals is interpreted over finite traces.

kyrozier@iastate.edu

MLTL Benchmark Generation via Formula Progression 429

– if |π| = 1, then
• prog(true, π) = true and prog(false, π) = false;
• if ϕ = p is an atom, prog(ϕ, π) = true iff p ∈ π[0];
• if ϕ = ¬ψ, prog(ϕ, π) = ¬prog(ψ, π);
• if ϕ = ψ1 ∨ ψ2, prog(ϕ, π) = prog(ψ1, π) ∨ prog(ψ2, π);
• if ϕ = ψ1 ∧ ψ2, prog(ϕ, π) = prog(ψ1, π) ∧ prog(ψ2, π);
• if ϕ = ψ1U[a,b]ψ2,

prog(ϕ, π) =

⎧
⎪⎨

⎪⎩

ψ1U[a−1,b−1]ψ2 if 0 < a ≤ b;
prog(ψ2, π) ∨ (prog(ψ1, π) ∧ ψ1U[0,b−1]ψ2) if 0 = a < b;
prog(ψ2, π) if 0 = a = b;

• if ϕ = F[a,b]ψ2,

prog(ϕ, π) =

⎧
⎪⎨

⎪⎩

F[a−1,b−1]ψ2 if 0 < a ≤ b;
prog(ψ2, π) ∨ F[0,b−1]ψ2 if 0 = a < b;
prog(ψ2, π) if 0 = a = b;

• if ϕ = ψ1R[a,b]ψ2, prog(ϕ, π) = ¬prog((¬ψ1)U[a,b](¬ψ2), π);
• if ϕ = G[a,b]ψ2, prog(ϕ, π) = ¬prog(F[a,b](¬ψ2), π);

– else prog(ϕ, π) = prog(prog(ϕ, π[0]), π1).

The procedure prog takes an MLTL formula ϕ and finite trace π as the
input, and returns another MLTL formula by progressing π over ϕ. Figure 1
exemplifies formula progression over ϕ = F[2,3]a with respect to the trace
π = {¬a}{¬a}{a}. From the figure, we have prog(ϕ, π1(= {¬a})) = F[1,2]a,
prog(ϕ, π2(= {¬a}{¬a})) = F[0,1]a, and prog(ϕ, π3(= {¬a}{¬a}{a})) = true.
Based on Definition 1, we have the following theorems.

0

F[2,3]a

1

F[1,2]a

2

F[0,1]a

3

true

¬a ¬a a

Fig. 1. The schema of prog(F[2,3]a, π = {¬a}{¬a}{¬a}{a}).

Theorem 1. Formula Progression Decomposition. Let ϕ be an MLTL
formula and π be a finite trace. Then formula progression on π can be decomposed
into two progressions on the sub-traces (i.e. πk, πk) of π for an arbitrary k in
the range 1 ≤ k ≤ |π|. Formally, prog(ϕ, π) = prog(prog(ϕ, πk), πk) for every
1 ≤ k ≤ |π|.
Proof. When k = 1, prog(ϕ, π) = prog(prog(ϕ, π1), π1) is true based on
Definition 1. Assume prog(ϕ, π) = prog(prog(ϕ, πk), πk) is true for 1 ≤
k < |π|. Since prog(prog(ϕ, πk), πk) = prog(prog(prog(ϕ, πk), π[k]), πk+1)
and prog(prog(ϕ, πk), π[k]) = prog(ϕ, πk+1) are true by Definition 1, we
have the following is also true: prog(ϕ, π) = prog(prog(ϕ, πk+1), πk+1) =
prog(prog(ϕ, πk+1), πk+1).

kyrozier@iastate.edu

430 J. Li and K. Y. Rozier

Theorem 1 generalizes the recursive part of Definition 1. To perform formula
progression over ϕ with respect to the finite trace π, it is equivalent first perform
formula progression over ϕ with respect to the prefix of π up to k, i.e. πk, and
then perform formula progression over prog(ϕ, πk) with respect to the subfix of
π from k, i.e., πk.

Theorem 2. Satisfiability Preservation. Let ϕ be an MLTL formula and π
be a finite trace. Then π satisfies ϕ iff the suffix of π, i.e., πk for some k, satisfies
the formula obtained from formula progression over ϕ with respect to the prefix
of π, i.e., πk. Formally, π |= ϕ iff πk |= prog(ϕ, πk) for every 1 ≤ k ≤ |π|.
Proof. (Sketch.) When k = 1, the proof can be done by an induction over the
construction of prog(ϕ, π1) (the base case in Definition 1). Inductively, assume
π |= ϕ iff πk |= prog(ϕ, πk) is true for 1 ≤ k < |π|. From the hypothesis assump-
tion, πk |= prog(ϕ, πk) iff πk+1 |= prog(prog(ϕ, πk), π[k]) = prog(ϕ, πk+1)
holds. As a result, we have that π |= ϕ iff πk+1 |= prog(ϕ, πk+1) holds.

Theorem 2 states that the formula progression is able to preserve the satis-
faction of π in terms of the MLTL formula ϕ.

Theorem 3. Correctness. Let ϕ be an MLTL formula and π be a finite trace.
Then π |= ϕ holds iff prog(ϕ, π) = true holds.

Proof. (Sketch.) For the base case when |π| = 1, the inductive proof can be
done over the construction of prog(ϕ, π) (the base case in Definition 1). When
|π| > 1, we have π |= ϕ iff π|π|−1 |= prog(ϕ, π|π|−1) according to Theorem 2.
Moreover, since |π|π|−1| = 1 and we have proved that π|π|−1 |= prog(ϕ, π|π|−1)
iff prog(prog(ϕ, π|π|−1), π[|π| − 1]) = prog(ϕ, π) = true holds (from Theorem 1),
it is true that π |= ϕ holds iff prog(ϕ, π) = true holds when |π| > 1.

Theorem 3 is a direct conclusion from Theorem 2, considering the particular
situation when formula progression has been performed on all timestamps of π.

Corollary 1. For the MLTL formula ϕ and finite trace π, π |= ϕ implies π ·
π′ |= ϕ for any arbitrary finite trace π′.

Proof. From Theorem 3, π |= ϕ implies that prog(ϕ, π) = true holds. Since
π′ |= true and prog(ϕ, π) = true hold, it is true that π · π′ |= ϕ based on
Theorem 2.

We use the theorems and corollary introduced above as the theoretic cor-
rectness guarantee of our benchmark construction algorithms in the following
section.

4 Benchmark Generation

4.1 Random Pattern

We use the MLTL generation tool released in [6] to construct random MLTL
formulas. Once the formula ϕ is generated, we create a finite trace over the

kyrozier@iastate.edu

MLTL Benchmark Generation via Formula Progression 431

alphabet of the formula, i.e., Σ, with a random length (≥ 1) and assign a random
assignment P ∈ 2|Σ| to each timestamp of the trace. We use the algorithm prog
and Theorem 3 to generate π such that πk |= ϕ holds iff prog(ϕ, πk) = true
for 0 ≤ k < |π|. In this way, we can efficiently generate large sets of always-
satisfiable benchmark instances, representing the case where the system always
upholds its requirements.

4.2 Almost-Satisfiable Pattern

For an instance 〈ϕ, π,O〉 under the Almost-Satisfiable Pattern, πk |= ϕ must
be true for as many k as possible (1 ≤ k < |π|). To generate such instances,
we leverage both the MLTL-SAT [6] and formula progression techniques in the
following procedure:

– Use the MLTL-SAT solver to generate a model (satisfying finite trace) π for
the given formula ϕ. If no such model exists, ϕ is unsatisfiable and we discard
it. Otherwise, π(= π0) |= ϕ and we push the pair 〈0, true〉 into O;

– To pursue πk |= ϕ (1 ≤ k < |π|) also being true, we extend π as follows:
• First apply the formula progression technique to obtain the formula

prog(ϕ, πk);
• Use the MLTL-SAT solver to generate a model π′ for prog(ϕ, πk). It may

be possible that such model π′ does not exist, in which case we push
〈k, false〉 into O and terminate our attempt to make πk |= ϕ;

• If π′ exists, update π with π · π′. Theorem 2 guarantees that πk |= ϕ
holds for the updated π. Push 〈k, true〉 into O;

• The updated π also preserves the fact that πk−1 |= ϕ, i.e., the extension of
π does not affect the previous truth evaluations, according to Corollary 1.

– To ensure termination, we set a mission length bound for the finite trace π.

The procedure SAT(ϕ) calls the MLTL-SAT solver to check the satisfiability
of ϕ. Taking the MLTL formula ϕ and fixed length bound K for the generated
trace in the instance, the procedure returns an instance of an Almost-Satisfiable
Pattern.

Theorem 4 (Correctness). Let 〈ϕ, π,O〉 be the instance generated from
Algorithm 1. Then we have πk |= ϕ iff 〈k, true〉 ∈ O for 1 ≤ k ≤ |ϕ|.

4.3 Almost-Unsatisfiable and Median-Satisfiable Patterns

We also consider the dual of Almost-Satisfiable Pattern, namely Almost-
Unsatisfiable Pattern, each instance under which requires that πk � |= ϕ be true for
as many k as possible (1 ≤ k < |π|). First we create an Almost-Satisfiable Pattern
instance 〈ϕ, π,O〉 as shown in the previous section. Then we negate the formula
in the instance and set O′ = {〈k, true〉|〈k, false〉 ∈ O} ∪ {〈k, false〉|〈k, true〉 ∈ O}.
As a result, the instance 〈¬ϕ, π,O′〉 is under the Almost-Unsatisfiable Pattern.

kyrozier@iastate.edu

432 J. Li and K. Y. Rozier

Algorithm 1. The Pseudo-code to generate the Almost-Satisfiable Pattern
instances
Require: An MLTL formula ϕ, and the length bound K for the generated finite trace.
Ensure: An instance 〈ϕ, π, O〉 that is under Almost-Satisfiable Pattern.
1: if SAT(ϕ) return UNSAT then
2: return 〈ϕ, ε, O〉 (ε is the empty trace);
3: end if
4: Let π be the model returned from SAT(ϕ);
5: while 1 ≤ k < |π| do
6: if |π| > K then
7: return 〈ϕ, π, O〉;
8: end if
9: Let ϕ′ = prog(ϕ, πk);

10: if SAT(ϕ′) return UNSAT then
11: Push the pair 〈k, false〉 into O;
12: else
13: Let π′ be the model returned from SAT(ϕ′);
14: Update π = π · π′;
15: Push the pair 〈k, true〉 into O;
16: end if
17: end while
18: return π;

The Median-Satisfiable Pattern is a combination of the Almost-Satisfiable
and Almost-Unsatisfiable Patterns; in each instance the number of timestamps
on which the formula are satisfied is almost the same as that of timestamps on
which the formula are falsified. To generate such an instance, we simply create
an Almost-Satisfiable and Almost-Unsatisfiable Pattern instance respectively,
i.e. 〈ϕ, π1,O1〉 and 〈ϕ, π2,O2〉, which have the same MLTL formula. Then the
instance 〈ϕ1, π1 · π2,O〉, where O = O1 ∪ O2, is under the Median-Satisfiable
Pattern.

5 Conclusions and Future Work

By introducing algorithms for generating several crafted patterns of RV bench-
marks, we have paved the way for the creation of a benchmark generation tool
and the ability to create a large set of publicly-available benchmarks. Next, we
plan to implement and experimentally evaluate the performance of our bench-
mark generation algorithms. After we optimize the performance to enable effi-
cient generation of large sets of each type of benchmark, we plan to release our
code and a database of generated instances.

kyrozier@iastate.edu

MLTL Benchmark Generation via Formula Progression 433

References

1. Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. In: Pro-
ceedings 5th IEEE Symposium on Logic in Computer Science, pp. 390–401 (1990)

2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
3. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math.

Artif. Intell. 22, 5–27 (1998)
4. Furia, C.A., Spoletini, P.: Tomorrow and all our yesterdays: MTL satisfiability

over the integers. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC
2008. LNCS, vol. 5160, pp. 126–140. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85762-4 9

5. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and bayesian net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 215–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 18

6. Li, J., Rozier, K.Y., Vardi, M.Y.: Evaluating the satisfiability of mission-time LTL:
a bounded MTL over naturals. Under submission (2018)

7. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

8. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. FMSD 51, 1–31 (2017)

9. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

10. Reger, G., Rozier, K.Y., Stolz, V.: Runtime verification benchmark challenge,
November 2018. https://www.rv-competition.org/2018-2/

11. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

12. Rozier, K.Y.: On the evaluation and comparison of runtime verification tools for
hardware and cyber-physical systems. In: RV-CUBES, vol. 3, pp. 123–137. Kalpa
Publications (2017)

13. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent hardware-enabled sensor and
software safety and health management for autonomous UAS. In: Technical Mem-
orandum NASA/TM-2015-218817, NASA Ames Research Center, Moffett Field,
CA 94035, May 2015

14. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: Monitoring and diagnosis of
security threats for unmanned aerial systems. In: RV. Springer-Verlag (2015)

15. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A
Tool Exhibition Report. In: RV. Springer-Verlag (2016)

16. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. IJPHM 6(1), 1–27 (2015)

kyrozier@iastate.edu

https://doi.org/10.1007/978-3-540-85762-4_9
https://doi.org/10.1007/978-3-540-85762-4_9
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-85778-5_1
https://www.rv-competition.org/2018-2/
https://doi.org/10.1007/978-3-642-54862-8_24

