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SAT, SMT, and Propositional → Temporal Logics
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Temporal Logic Behavior Properties Over Infinite Traces

Linear Temporal Logic (LTL) formulas reason about linear timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives:

Xp next time p

�p always p p p ppp p p p

♦p eventually p

pUq until p pp p q

pRq release q qq q p,q
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LTLf: Linear Temporal Logic on Finite Traces1

LTLf formulas reason about finite linear timelines terminating at Tail :

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives:

Xp next time
p Tail

�p always Tailp p p ppp p p p

♦p eventually Tailp

pUq until Tailp pp p q

pRq release Tailq qq q p,q

1
G. De Giacomo, M.Y. Vardi. “Linear temporal logic and linear dynamic logic on finite traces.” IJCAI 2013.
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Property Assurance: We Propose Satisfiability Checking

Let M be a temporal model that assigns values to the propositions in ϕ.

M |= ϕ may not mean the system has the intended behavior

M 6|= ϕ may not mean the system does not have the intended behavior

Recall that a property ϕ is valid iff ¬ϕ is unsatisfiable.

If ¬ϕ is not satisfiable, then

There can never be a violation (e.g., model-checking counterexample).

ϕ is probably wrong.

If ϕ is not satisfiable, then

There is always a violation (e.g., model-checking counterexample).

ϕ is probably wrong.
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Specification Debugging: LTL Satisfiability Checking

For each property ϕ and ¬ϕ we should check for satisfiability.

We need to check the conjunction of all properties for satisfiability.
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LTL Satisfiability Is Hard

LTL Satisfiability Checking is
PSPACE-Complete!

We have to be smart about encoding the problem!
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LTL Satisfiability is Hard to Scale2

Many tools cannot check 8-bit binary counter formulas
2

K.Y.Rozier, M.Y.Vardi. “LTL Satisfiability Checking.” STTT Journal, pg. 123–137, 2010.
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LTL Satisfiability Is Hard to Code Correctly3

Common Problems:

Reporting SAT when a
formula is UNSAT and
vice versa.

No difference between
empty automata
(indicating UNSAT) and
error cases.

Most LTL encoding tools do
not behave robustly and die
gracelessly.

3
K.Y.Rozier, M.Y.Vardi. “LTL Satisfiability Checking.” STTT Journal, pg. 123–137, 2010.
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We Correct These By Establishing Rigorous Benchmarks 4

Random Formulas:
60,000

X
b

R

¬

→
c
∧

FG a

U
∨

Counter Formulas: ∼60 (4 types)

00 01 10 11 ...

000 001 010 011 100 ...

0000 0001 0010 0011 0100 0101 ...

00000 00001 00010 00011 00100 00101 00110 ...
...

Pattern Formulas: ∼8, 000 (9 patterns)

GF R
FGU

4K.Y. Rozier and M.Y. Vardi. “LTL Satisfiability Checking.” SPIN’07.
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Implementation is Hugely Influential5

5
K.Y.Rozier, M.Y.Vardi. “LTL Satisfiability Checking.” STTT Journal, pg. 123–137, 2010.
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Better Encoding Can Lead to Exponential Improvement! 6

R2(n) = (..(p1 R p2) R . . .) R pn.

6
K.Y. Rozier and M.Y. Vardi. “A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking.” FM’11.
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Even for Very Hard Formulas! 7

U(n) = (. . . (p1 U p2) U . . .) U pn.

7
K.Y. Rozier and M.Y. Vardi. “A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking.” FM’11.
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We Need to Sustain a Runtime Verification Competition
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Mission-Bounded Linear Temporal Logic 8

Mission-Time Temporal Logic (MLTL) reasons about integer-bounded
timelines:

finite set of atomic propositions {p q}
Boolean connectives: ¬, ∧, ∨, and →
temporal connectives with time bounds:

Symbol Operator Timeline

�[2,6]p Always[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

♦[0,7]p Eventually[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q Until[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q Release[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

8
T. Reinbacher, K.Y. Rozier, J. Schumann. “Temporal-Logic Based Runtime Observer Pairs for System Health

Management of Real-Time Systems.” TACAS 2014.
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What is an (MLTL) RV Benchmark?

Time:
0 1 2 3 4 5 6 7 8 9

MLTL formula ϕ evaluated over system trace π:
∀i : 0 ≤ i ≤ Mission Time π, i |= ϕ.

An MLTL Runtime Benchmark is a 3-tuple:

Input stream, or computation, π

MLTL formula, ϕ, over n propositional variables

Oracle O, of 〈time, verdict〉
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MLTL Runtime Benchmark Generation: An Example9

Time:
a ¬a ¬a a a a a a a a

0 1 2 3 4 5 6 7 8 9
MLTL formula ϕ evaluated over system trace π:

∀i : 0 ≤ i ≤ Mission Time π, i |= ϕ.

MLTL Runtime Benchmark Example:
π = a,¬a,¬a, a, a, a, a, a, a, a
ϕ = Always[5](a)
O = 〈0,F 〉 , 〈1,F 〉 , 〈2,F 〉 , 〈3,T 〉 , 〈4,T 〉 , . . .

9
J.Wallin and K.Y.Rozier. “Generating System-Agnostic Runtime Verification Benchmarks from MLTL Formulas via

SAT.” Under Submission.
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Example: Benchmark Generation via Formula Progression10

Inputs : ϕ = F[2,3]a

π = ¬a, ¬a, a

0

F[2,3]a

1

F[1,2]a

2

F[0,1]a

3
¬a ¬a a

Figure: The schema of prog(F[2,3]a, π = {¬a}{¬a}{a}).

prog(ϕ, π1(= {¬a})) = F[1,2]a
prog(ϕ, π2(= {¬a}{¬a})) = F[0,1]a
prog(ϕ, π3(= {¬a}{¬a}{a})) =TRUE

10
Jianwen Li and Kristin Yvonne Rozier. “MLTL Benchmark Generation via Formula Progression.” In Runtime

Verification (RV18), Springer-Verlag, 2018.
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MLTL Satisfiability

We can generate MLTL RV benchmarks with an
MLTL Satisfiability Solver11

11
Jianwen Li, Moshe Vardi, and Kristin Yvonne Rozier. Satisfiability Checking for Mission-Time LTL. In CAV,

Springer-Verlag, 2019.
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Open Questions

Can we improve LTL Satisfiability (algorithms, tools, usability)
further? (How?)

MLTL Satisfiability? MLTL Benchmarks?
LTLf Satisfiability? LTLf Benchmarks?

All of these logics have past-time variants. . .
pt-LTL-SAT? Benchmarks?
pt-MLTL-SAT? Benchmarks?
pt-LTLf-SAT? Benchmarks?

MaxSat for Temporal Logics?
Applications in specification debugging, requirements engineering,
explainability, . . .
RV? Essentially a MaxSat problem at each time instance?

Many more . . .
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