
On Teaching Applied Formal Methods
in Aerospace Engineering

Kristin Yvonne Rozier(B)

Iowa State University, Ames, IA, USA
kyrozier@iastate.edu

Abstract. As formal methods come into broad industrial use for verifi-
cation of safety-critical hardware, software, and cyber-physical systems,
there is an increasing need to teach practical skills in applying formal
methods at both the undergraduate and graduate levels. In the aerospace
industry, flight certification requirements like the FAA’s DO-178B, DO-
178C, DO-333, and DO-254, along with a series of high-profile accidents,
have helped turn knowledge of formal methods into a desirable job skill
for a wide range of engineering positions. We approach the question of
verification from a safety-case perspective: the primary teaching goal is
to impart students with the ability to look at a verification question and
identify what formal methods are applicable, which tools are available,
what the outputs from those tools will say about the system, and what
they will not, e.g., what parts of the safety case need to be provided
by other means. We overview the lectures, exercises, exams, and stu-
dent projects in a mixed-level (undergraduate/graduate) Applied Formal
Methods course (Additional materials are available on the course web-
site: http://temporallogic.org/courses/AppliedFormalMethods/) taught
in an Aerospace Engineering department. We highlight the approach,
tools, and techniques aimed at imparting a good sense of both the state
of the art and the state of the practice of formal methods in an effort
to effectively prepare students headed for jobs in an increasingly formal
world.

1 Introduction

Verification is a fundamental engineering skill; the current surge toward auton-
omy and increasingly intelligent operation of hardware, software, and cyber-
physical systems has changed how we need to apply, and teach, verification at
the university level. Industrial aerospace systems, including avionics, commer-
cial aircraft, Unmanned Aerial Systems (UAS), satellites, and spacecraft, are
being pushed toward design-for-verification, e.g., by Model-Driven Engineering
[16,18,37–40], Fault Detection, Isolation and Recovery (FDIR) [5,14], and Run-
time Verification [15,23,24,33]. “Nowadays, it is well-accepted that the devel-
opment of critical [aerospace] systems involves the use of formal methods,” [1].

Thanks to NSF CAREER Award CNS-1552934 for supporting this work.

c© Springer Nature Switzerland AG 2019
B. Dongol et al. (Eds.): FMTea 2019, LNCS 11758, pp. 111–131, 2019.
https://doi.org/10.1007/978-3-030-32441-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32441-4_8&domain=pdf
http://orcid.org/0000-0002-6718-2828
http://temporallogic.org/courses/AppliedFormalMethods/
https://doi.org/10.1007/978-3-030-32441-4_8

112 K. Y. Rozier

In addition to the obvious need to train verification engineers and researchers
developing new formal methods, we are faced with the need to train a wide
range of engineers with basic skills like understanding the outcome of a formal
methods analysis.

Through a mixed-level (undergraduate/graduate) course, we introduce stu-
dents to the fundamentals of formal methods, which we define as a set of math-
ematically rigorous techniques for the formal specification, design, validation,
and verification of safety-critical systems, of which aircraft and spacecraft are
the prime example. The course explores the tools, techniques, and applications
of formal methods with an emphasis on real-world use-cases such as enabling
autonomous operation. Students build experience in writing mathematically ana-
lyzable specifications from English operational concepts for real systems, such as
aircraft and spacecraft. Together, the class examines the latest research to gain
an understanding of the current state of the art, including the capabilities and
limitations of formal methods in the design, verification, and system health man-
agement of today’s complex systems. Students leave with a better understanding
of real-world system specification, design, validation, and verification, including
why the FAA specifically calls out formal methods in certification requirements
such as DO-178B [21], DO-178C [20], DO-333 [19], and DO-254 [22].1

This course is intended to be a fun, interactive introduction to applying
formal analysis in the context of real-world systems. We emphasize hands-on
learning, through the use of software tools in homeworks and projects. Students
learn the real tools used at NASA, Boeing, Collins Aerospace, Honeywell, Air-
bus, the Air Force, and others. Students from all areas of aerospace engineering,
electrical and computer engineering, computer science, and other engineering dis-
ciplines, are encouraged to enroll. The course is cross-listed at the senior under-
graduate/entry graduate levels and cross-listed in the Aerospace Engineering
(AERE) and Computer Science (COMS) departments at Iowa State University
and advertised in the Electrical and Computer Engineering and Mathematics
departments; students from Industrial Engineering and Mechanical Engineer-
ing have also enrolled in this elective. Aiming for broad appeal, all concepts
in the class are motivated chiefly through aerospace engineering applications;
this shows direct applications to those students in the Aerospace Engineering
Department and provides interesting use-cases for other majors. Example appli-
cations in homeworks include many different aspects of automated air traffic
management and designing for autonomous operations of UAS.

Applied Formal Methods takes a safety case perspective [2,7,10,16,32]; in
Aerospace Engineering, a safety case enables flight certification by providing an
explicit statement of safety claims, a body of evidence concerning the system,

1 Note that the railway industry has comparable standards CENELEC EN 50126
[8], EN 50128 [9], and EN 50129 [11]; these govern applications of formal methods
in industrial rail systems, such as the success in verifying Paris’ fully automatic,
driverless Métro Line 14 (aka Météor-Metro est-ouest rapide) [3]. The course high-
lights railway, motor vehicle, medical, and other applications of industrial formal
verification.

On Teaching Applied Formal Methods in Aerospace Engineering 113

and an argument, based on the evidence, that the system satisfies its claims [31].
The major learning objective is for students to be able to read and understand,
contribute to, and design an engineering system for being flight certified by a
safety case, as this capability is now a general engineering skill. Students have
the opportunity to construct a safety case as a half-semester final project for the
course.

Learning Outcomes. Our central focus is to enable students to look at a problem,
identify what we can verify, what information is needed to perform that analysis,
how to validate the verification setup, and how to place the results in the field,
e.g., by identifying what is now known, to what extent, and what is not known.
Students learn to read research papers in formal methods, identify the current
state of the practice, critically analyze current capabilities and limitations of the
available tools and techniques, and effectively identify the inputs and outputs
to verification, including what they really mean with respect to industrial safety
standards. We specifically emphasize learning techniques for specification debug-
ging and validation of mathematical models of systems. By the end of the course,
students can identify what we can verify, and how; what can’t we verify and why
not; and what do we not have enough information to verify (and what additional
information would we need). To construct an effective safety case, students must
be able to recognize incomplete verification problems, identify ways to complete
them, and identify assumptions and risks to validation.

Specific Learner Objectives. Through hands-on experience with formal methods
tools and techniques, classroom discussions, homeworks, and projects students
have the opportunity to learn to:

– Specify system requirements formally in Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL).

– Specify systems as formal models, i.e., models in a formal semantics.
– Apply model checking to system models and LTL specifications to determine

if the models satisfy the specifications.
– Use tools popular in industrial verification labs, including explicit and sym-

bolic model checkers, and theorem provers.
– Evaluate real-world systems to determine appropriate formal methods to use

in their analysis.
– Evaluate system requirements, including determining if they are safety or

liveness, and performing basic specification debugging.
– Analyze and draw conclusions about real-world systems regarding formal

properties, understanding their significance and the inherent assumptions and
limitations.

– Explain the principles underlying formal methods for different types of sys-
tem analysis (e.g. design time versus runtime), the capabilities, and the lim-
itations.

– Develop an understanding of the current state of the art and how to find
formal methods tools for real-world use cases.

114 K. Y. Rozier

Prerequisites. The course requires the mathematical maturity and experience
with proof structures covered in Calculus II (ISU MATH 166). Due to the cross-
listing, the prerequisite is a disjunction of the Aerospace Engineering course
Computational Techniques for Aerospace Design (ISU AERE 361) or the Com-
puter Science Algorithms course (ISU COMS 311); both have MATH 166 as a
prerequisite. Students should be familiar with first-order logic quantifiers and
inductive proof techniques in order to understand Theorem Proving; professor
permission enables registration for students who learned these skills in another
300-level course, e.g., from other engineering majors.

Organization. The remainder of this paper is organized as follows. Section 2
overviews the high-level approach to teaching Applied Formal Methods, includ-
ing course assignments and examinations, highlights from the syllabus, and a
general course schedule. We specifically pull out the tools and techniques cov-
ered in class in Sect. 3. Further details about the student research presentations
and half-semester projects, including group projects, appear in Sects. 4 and 5
respectively. Section 6 concludes with an outlook toward continuous improve-
ment of the course.

2 Approach

Grade Component Weight
Homeworks and Projects 30%
Midterm 25%
Research Paper Presentation 15%
Evaluation of Other Presentations 5%
Final Project 25%

Fig. 1. The weight assigned to each com-
ponent: grades are assigned based on per-
formance on homeworks, projects, presenta-
tions, a midterm exams, and a final project.

The first half (55–60%) of the course
is a survey of the formal methods
using modern tools, exemplified by
case studies on industrial applica-
tions of formal verification. Class
sessions are largely interactive and
include discussions of the readings,
guest speakers from industry, small
group activities, and lecture. Stu-
dents are encouraged to participate
actively in class sessions. Lectures
commence with “Formal Methods
Explained: what are formal methods, why do we need formal methods, and
why don’t we formally verify everything?” The course proceeds to briefly review
propositional logic and proofs. Class sessions cover in detail temporal logics,
strategies for formal specification, specification debugging [27,28], system mod-
eling, explicit model checking [29], theorem proving [6], and symbolic model
checking based on [25]. These are the topics covered by the midterm exami-
nation, given during normal class hours, covering the material from readings
and homeworks from the first half of the course. The second half of the course
requires only two assignments: an in-class presentation of a research paper of the
student’s choosing, and a final project spanning the second half of the course,
which serves in place of a final exam. All students are required to present the
results of their final project mid-term and final results to the class and turn

On Teaching Applied Formal Methods in Aerospace Engineering 115

in a report including all artifacts required for reproducibility of their results at
the end of the semester during the final exam period. Figure 1 summarizes the
course assignments.

Fig. 2. The tree of Formal Methods, as pre-
sented in lectures; solid lines represent direct
variations whereas dashed lines represent
related derivations.

Other formal methods are dis-
cussed in class, included in in-class
activities, demos or videos, and read-
ings. Classes trace the relationships
shown in Fig. 2.

Homeworks and Projects. All home-
works are distributed and collected
via github classroom. Homeworks are
required to be typed and formatted in
LATEX; some require submitting input
files, e.g., for Spin, nuXmv, or PVS,
solving the verification exercises. Stu-
dents may talk about the problems
with fellow students and the profes-
sor, but must submit individually-
drafted write-ups. We occasionally
discuss and work through parts of
homework problems or variations
thereof in class. When discussing
with fellow students they must strictly follow the “empty hands policy:” one
cannot leave a discussion meeting with any record of the discussion (hard
copy or electronic). All scratch paper must be torn and thrown away and all
boards erased. Homeworks are encouraged to include BibTEX references sec-
tions, including credit to collaborators and outside sources consulted. Students
are encouraged to consult research papers, books, or other published materials
in accordance with the University Honor Code (which prohibits searching for
answers online, posting questions to internet forums, or discussing any assign-
ments with others on the internet). All solutions should be written in each stu-
dent’s own words, even if the solutions exist in a publication referenced in the
homework bibliography. While we adjust the course schedule every semester,
depending on the students’ backgrounds and the availability of guest speakers,
a common schedule for the 16-week semester appears in Table 1.2

Reading Materials. Reading materials are included in the homeworks or other-
wise distributed in class, e.g., research papers. There is no required textbook for
this class. Two optional textbooks provide supplemental materials for students
who desire additional reading, with the following caveats.

2 In the U.S., there is usually a one-week break in the second half of the semester, after
the mid-term project report presentations (Thanksgiving Break or Spring Break).

116 K. Y. Rozier

Table 1. A typical schedule for the homework assignments/small verification projects
(top) comprising the survey of formal methods tools and techniques, along with the
independent-research-based course assignments (bottom) across a 15-week semester
with a following final exam period.

Week: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0: git
1: PL
2: TL
3: Spec
4: E-MC
5: TP
6: S-MC
Midterm
Pres
P: Prop
P: MP
P: FP
P: Fin

HW 0 github classroom and LATEXfundamentals; due 2nd class period
HW 1 Propositional Logic: review of logic and proof structure; ∼1 week
HW 2 Temporal Logic: LTL and CTL; ∼1.5 weeks
HW 3 Classifying Specifications & Explicit-State Modeling in Spin; ∼2.5 weeks
HW 4 Explicit-State LTL Model Checking in Spin; ∼1 week
HW 5 Theorem Proving: exercises in PVS (or Isabelle); ∼1 week
HW 6 Symbolic Model Checking with NUXMV; ∼1 week

Midterm Comprehensive exam covering all homework topics in the 9th or 10th week
Presentation Choice of paper due concurrently with HW 6; research paper presentation

and peer evaluations during class periods after midterm
Project (P) Initial project proposal due immediately following midterm; mid-way pre-

sentation (MP) in front of the class 2-3 weeks later; final presentation (FP)
during the last week of classes; final paper/verification artifacts (Fin) due
during final exam period

Optional Textbook: An Introduction to Practical Formal Methods Using Tem-
poral Logic [13]. Use this for:

– good background on LTL: well-formed formulas, semantics, encoding English
sentences, expressivity, normal forms, relationship to automata

– reactive system properties: safety, liveness, fairness
– specification and modeling of real systems
– deciding the truth of a temporal formula; related proof techniques including

explicit model checking
– thorough chapter on Spin, including how to run it from the command line

and a good Promela tutorial

On Teaching Applied Formal Methods in Aerospace Engineering 117

– review of classical and propositional logic
– extensions including synthesizing software from specifications

Be cautious that:

– LTL is instead called PTL in this book; that is non-standard
– LTL2BA is not the best tool; SPOT is superior now: https://spot.lrde.epita.

fr/
– URLs provided are outdated (no longer active or superseded by the state of

the art)
– Spin chapter refers to outdated xspin (though only briefly)

Optional Textbook: Systems and Software Verification: Model-Checking Tech-
niques and Tools [4]. Use this for:

– supplemental material on temporal logics (LTL, CTL, CTL∗)
– background on automata as system models
– review of explicit and symbolic model checking
– reachability, safety, liveness, deadlock-freeness, fairness
– overview of modeling abstraction methods
– out-of-date chapters on SPIN and SMV still have useful reviews of basic tool

usage
– ideas for related formal methods, including timed automata models, addi-

tional tools

Be cautious that:

– This book is extremely out of date!
– LTL is the proper name for Linear Temporal Logic (book calls it PLTL)
– comparisons of LTL vs CTL/CTL∗ have been changed/been disproved
– SMV version described is no longer available; current tool is nuXmv
– Spin version described has been updated (xspin vs ispin)

3 Tools and Techniques

While homeworks include hands-on projects in Spin, nuXmv, and PVS (or
Isabelle), several other tools and techniques are covered in lectures, demos, or
in-class activities. These tools, plus the most popular selections from student-
devised projects, are collected in Table 2.

The first half of the semester (before the midterm) lectures are predominantly
taught with a combination of slides and in-class exercises, frequently involving
the class breaking into two or three groups, each with their own whiteboard,
and solving problems in competition, usually in the form of a game. Groups
must convince the rest of the class of the correctness of their answers to receive
game points. The winning team is often awarded a prize like NASA stickers or
similar swag from a guest speaker. Sometimes the same problem is posed to
all groups, and sometimes each group is assigned a different strategy to employ
then discuss with the class. For example, lessons on temporal logic encodings

https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/

118 K. Y. Rozier

Table 2. Tools featured in different areas of the Applied Formal Methods course.

Spin Model Checker http://spinroot.com/

SPOT Produces Our Traces https://spot.lrde.epita.fr/

(Optional for use in Spin-related homeworks)

nuXmv Model Checker https://es-static.fbk.eu/tools/nuxmv/

PVS Theorem Prover http://pvs.csl.sri.com/

(OR Isabelle)

Isabelle Theorem Prover https://isabelle.in.tum.de/

(OR PVS)

PRISM Model Checker http://www.prismmodelchecker.org/

Z3 SMT Solver https://github.com/Z3Prover/z3

R2U2 Runtime Verifier http://temporallogic.org/research/R2U2/

Dafny Language and Program Verifier http://rise4fun.com/dafny/

(continued)

http://spinroot.com/
https://spot.lrde.epita.fr/
https://es-static.fbk.eu/tools/nuxmv/
http://pvs.csl.sri.com/
https://isabelle.in.tum.de/
http://www.prismmodelchecker.org/
https://github.com/Z3Prover/z3
http://temporallogic.org/research/R2U2/
http://rise4fun.com/dafny/

On Teaching Applied Formal Methods in Aerospace Engineering 119

Table 2. (continued)

CBMC (Bounded Model Checker for C and C++ programs) http://www.cprover.

org/cbmc/

Coq Proof Assistant https://coq.inria.fr/ [Book: Formal Reasoning About Programs

http://adam.chlipala.net/frap/]

Legend:

Required in homework assignments & covered thoroughly in class

Featured in in-class instruction or presentation by guest lecturer(s)

Utilized in student-selected final project(s)

involve dividing the class by their personal preferences into an LTL group, a
CTL group, and an optional CTL* group (should anyone in the class feel most
strongly about that logic). During this Temporal Logic Showdown (based in part
on [35]), requirements in the form of English and/or figures (timelines, drawings,
flowcharts, etc.) are posed to the class simultaneously. The first group to correctly
encode the requirement in their logic and buzz in wins the points for the round.
After that, encoding in the other logic (between LTL and CTL) earns half-points
and the first team to buzz during that round in has the chance to steal those
points by completing the correct encoding in the other team’s logic and buzzing
in before that team.

4 Research Paper Presentations

Each member of the class presents a research paper in applied formal methods
to the class during the second half of the semester. A presentation consists of
a slide presentation to the class covering the paper, and a discussion including
the student’s own analysis of its results. Students sign up for presentation times.
The professor must approve all papers selected. Students can choose their papers
from a provided list of papers or from a list of relevant publication venues. Alter-
natively, students may feel free to propose a paper on applying formal methods
from any source for approval. Students evaluate the presentations of others for
credit; anonymized summaries of the feedback of classmates are included in each
student’s evaluation. While the professor reads these evaluations, presentations
are graded by the professor alone.

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/
https://coq.inria.fr/
http://adam.chlipala.net/frap/

120 K. Y. Rozier

4.1 Professor’s Presentation Evaluation Form

Students design their in-class research paper presentations according to the fol-
lowing evaluation criteria. Point values are listed in ��s.

1. Did the presentation address the following aspects of the paper?
(a) �5� What was the motivation given for the work? What problem was

being solved or question was being answered?
(b) �5� What was the product of the paper? How was the paper novel and

what did it contribute to the field? What tools were used, problems were
solved, and artifacts were created?

(c) �5� Is the work in the paper reproducible,3 i.e. are all of the necessary
artifacts available to redo the study, including any models, specifications,
theorems, code, data, benchmarks, or other instruments used to complete
the study described in the paper.

(d) �5� Is the work in the paper correct, i.e. did the authors specifically address
how that they know their work is correct or provide any evidence of
correctness such as a proof or a comparison to known results?

(e) �5� Is the work in the paper buildable, i.e. is the foundation laid in such a
way that others in the future would be able to build on it, extend it, and
utilize the results in a meaningful way to accomplish a different project?

(f) �5� Is there future work? This can include both future work listed in the
paper and ideas the student has for extending the work.

2. �10� Did the presentation accurately overview the paper and the work pre-
sented therein, given the time limit? Did the student make an effort to fully
understand the material and explain, if some piece is missing or not under-
standable, why that is the case?

3. �20� Was the presentation clear? Did the student make an effort to present the
materials clearly and instructively, not necessarily in the order of the paper?
Did the student draw on additional sources to fill out the information and
background knowledge required to understand the paper? Did the student
draw figures or create ways of presenting the material clearly and fully aside
from simply pasting in artifacts from the paper?

4. �15� Did the student adequately cover background information and related
work in an effort to enable him/herself as well as the class to understand
the material being presented? Examples of doing this well might include the
student reading and including material from some of the paper’s citations or
manuals for the tools used or otherwise including related background infor-
mation to aid understanding of the material presented in the paper. These
papers are short (usually about 15 pages) snapshots of single projects in for-
mal methods and are meant to be read by practitioners familiar with the field
and so usually do not include sufficient background information in the main
text.

3 For further reference on how exactly to define reproducibility, correctness, and build-
ability, please refer to: Rozier, Kristin Yvonne, and Rozier, Eric. “Reproducibility,
Correctness, and Buildability: the Three Principles for Ethical Public Dissemination
of Computer Science and Engineering Research,” In IEEE International Symposium
on Ethics in Engineering, Science, and Technology, Ethics’2014, May 23–24, 2014 [26].

On Teaching Applied Formal Methods in Aerospace Engineering 121

4.2 Student’s Presentation Evaluation Form

Peer evaluations earn students participation credit and provide good feedback
that is summarized, anonymized, and returned to their peers. Point values are
listed in ��s.

1. �2� What did you learn today? List at least three things you took away from
today’s class material.

2. �1� Was the presentation clear? What did you like about the way your
classmate explained the materials to you? What constructive suggestions do
you have to offer this classmate about how to present the material more
clearly? (Your response will not be passed on to your classmate, however,
an anonymized summary of all suggestions may be presented in class at the
professor’s discretion.)

3. �1� Was the content of the paper useful? Do you think the authors have
contributed something that you or others might use or build upon in a future
foray into formal verification? Why or why not?

4. �1� Is today’s paper/formal method/topic something you think would be use-
ful to examine in more depth in this class? Why or why not? Some paper
topics may be covered in more depth following student presentations in the
upcoming weeks; some may be earmarked for updating this class the next
time it is taught.

5 Student Projects

In lieu of a final exam, students complete half-semester projects demonstrating
their knowledge of applying formal methods. The high-level concept is simple:
pick a system, pick a formal method, and successfully apply that method to
that system. Students may work in groups of size one, two, or three. They are
encouraged to discuss their proposal with the professor early and often; a formal
project proposal is due mid-semester. Weekly progress reports, and a mid-term
presentation to the class ensure steady progress while encouraging them to name
their verification challenges and bring them up for discussion in class.

5.1 Initial Project Plan: Statement of Work

For the initial project plan, each person/group submits a statement of work that
specifically addresses the following questions:

1. Define your group. Who are the members of your group? What is your group
name?

2. Define the parameters of your project. What formal method are you using?
What specifications will you verify? What system will you analyze?

3. What does a success look like for your project? For example, a successful
model checking project will be able to demonstrate a system model, validation
of that model, a set of temporal logic specifications, a set of model checking

122 K. Y. Rozier

runs checking the specifications against the model, and an analysis of the
results. A successful theorem proving project will be able to demonstrate a set
of (validated) theorems that automatically prove in an automated theorem
prover and an analysis of the results of the proofs. A successful project in
runtime monitoring will be able to demonstrate a set of specifications, a set
of runtime monitors constructed from them, experimental results over many
system runs demonstrating correct operation of the runtime monitors, and
analysis of the results.

4. How will you demonstrate your analysis? In other words, answer all of the
following questions that relate to your project:

– What benchmarks will you use? Where will you get them from?
– How will you demo your analysis (in the class?) (in your final report?)
– How will you measure your results?

5. Remember to think about important logistics and organization elements.
Each person/group will collaborate via a git repository shared with the pro-
fessor. What will be the structure of your repo? How often should members
check point models/specifications/documentation elements? If the project is
a group project, how will the group coordinate? For a group, when will group
meeting be? For a single-person project, what time have you scheduled each
week to work on the project?

6. Provide a project timeline: for each week, list what you plan to accomplish
that week. Be realistic and make backup plans! Your group will email the
professor a (short) report at the end of each week with a project update
according to your weekly plan. This email can be as simple as a statement
that all tasks were accomplished that week, or as complicated as a detailed
explanation why something did not work and how you have replanned to do
an equivalent task. Weekly reports are due at 5pm on Fridays. This is your
chance to get feedback on your progress and questions every week!

5.2 Progress Report and Preliminary Results

Provide a preliminary report from your group in the form of an in-class pre-
sentation of your results-so-far, making sure to explicitly answer the following
questions:

– What parts of your project have you completed? Provide a bulleted list of
work outputs to date.

– Provide an outline of your final report. What will the format be? What sec-
tions will you include? How do you plan to present any data and your analysis?

– What challenges have you encountered so far and how do you plan to overcome
them? Provide a bulleted list of pairs {Challenge, Plan for action} to answer
this section.

– Do you think you will need to change/modify/add to your project in any
way? If so, make your case here. For example, if you have discovered that all
of your specifications fail when analyzed against your system, what is your
plan to modify the system and/or specifications?

On Teaching Applied Formal Methods in Aerospace Engineering 123

5.3 Final Report and Presentation to the Class

Each person/group presents their project and results to the class during the
last class periods, The time slots vary according to the size of the group. The
final report from each person/group is due during the scheduled final exam
period. The final report follows the outline and format described in the pre-
liminary progress report. It includes the deliverables listed in the initial project
plan/statement of work. Specifically, students should make sure to include the
following:

– An abstract: succinctly summarize the final project setup and results.
– All models, specifications, code, or other artifacts needed to reproduce the

work and re-run the verification tasks you completed for the project. The
professor must be able to re-run the verification procedure(s) fol-
lowed.

– Overview of the project including introduction, motivation, problem setup,
and other information needed to understand the problem domain.

– Related work and background information, citing any resources used in the
design and completion of this project.

– How was validation performed?
– What precisely was verified? What does it mean? How are the results signif-

icant?
– A complete verification analysis: results, performance of the tool(s) used, etc.
– A bibliography; Chicago Manual of Style (CMS) format is preferred.

The final report is cumulative; it needs to include all work done for the
project in a complete report. Failure to include any of the required sections
listed above results in losing points, even if the work was mentioned in class or
in a presentation.

5.4 Example Student Projects

Students are encouraged to design final projects involving real-life systems of
personal interest. Many students choose to form a project from the verification
component of their graduate or undergraduate thesis research, or of a senior
design or club project, such as creating a safety case for the launch of a student-
designed CubeSat. Other popular categories of projects include designing tools to
create instances of a game the student enjoys or to play such a game. Verification
of autonomous driving or security scenarios from popular media, and “classic”
projects (like verification of an elevator or traffic light protocol) have been pro-
posed every semester. A competitive project category has emerged where two
or three students all verify the same system from the same initial specification
using a different favorite verification tool akin to an extended version of the
VerifyThis4 competition, with additional creative judging criteria.

4 https://www.pm.inf.ethz.ch/research/verifythis.html.

https://www.pm.inf.ethz.ch/research/verifythis.html

124 K. Y. Rozier

Table 3 collects brief descriptions of student-designed final projects; in all
cases, the size of the expected final deliverables scaled linearly with the num-
ber of students in the group and was adjusted for undergraduate vs graduate
status. Several of the projects changed from the initial project proposal as the
students ran into unexpected road blocks or discovered new tangents worth pur-
suing. Changes often stemmed from negative validation results, and ranged from
minor adjustments in scope to major changes in the tools used (e.g., after being
able to prove a construct could not be expressed in one tool), or problem objec-
tive. Accordingly, many of the final reports include thoroughly-explored negative
results.

Table 3. A representative selection of student-devised final projects, 2015–2018.

Project description # U/G Tool(s) used

Verify a lane-keeping module for autonomous cars.

Starting with a road line detection algorithm, design

a correct control algorithm, verify safety

requirements using KeymaeraX and software

implementation via CBMC, and validate including

with real-world testing via augmenting the student’s

own car

1 U KeymaeraX, CBMC

Utilize explicit model checking to generate 3 × 3

magic square puzzles with unique solutions, and to

solve a given 3 × 3 puzzle

1 U Spin

Analyze a real system (the CySat Make to Innovate

(M:2:I) undergraduate research project) under active

development spanning multiple abstraction layers on

a demonstration mission toward surveying

near-Earth objects under NASA’s CubeSat Launch

Initiative. Software and hardware verification that

the ISU-designed flight computer meets mission

reliability requirements

1 U Spin, nuXmv

Verify the control of a tilt-wing medevac UAS

designed by an ISU senior design team meets safety

specifications

1 U Spin

Generate attack graphs (structures representing all

attack scenarios that an attacker can launch on a

system) via a model-based approach with

components/behaviors/defences/vulneratbilities and

specification of security/resiliency properties.

Iteratively model-check, disjuncting the previous

counterexample to the current security property to

generate acyclic attack graphs

1 G AADL, Lustre, Jkind, AGREE

Model the ZigBee wireless protocol along with a

collection of possible faults using OCRA for

component based modeling, contract-based design

and refinement, nuXmv for model checking of

resulting transition systems, and xSAP for safety

assessment and analysis

1 G nuXmv, OCRA, xSAP

Use Spin to generate winning strategies for the

Kartenspiele card game after a failed attempt with

PVS

1 G Spin, PVS

(continued)

On Teaching Applied Formal Methods in Aerospace Engineering 125

Table 3. (continued)

Project description # U/G Tool(s) used

Create a python library to parse mission-time linear

temporal logic (MLTL), create an explicit state-space graph

of a formula, display this with graphviz, and find a

satisfying path through the graph, comparing two different

search algorithms

1 G N/A

Model a set of self-driving car intersection navigation

scenarios and driving paths; use symbolic model checking to

verify that the car always chooses a safe path. Generalize

this to a maze solver, replicating previously-published

experiments with TuLiP. Solve two small mazes using the

GR(1)Py toolkit

1 G nuXmv, TuLiP, GR(1)Py

Model, validate, and verify a set of traffic signaling

algorithms using symbolic model checking. Scale the

number of traffic lights to four per intersection and the

number of successive intersections, varying properties like

the timing of lights, max cumulative wait time, and max

allowable queue length at a light. Compare performance for

BDD, BMC, and IC3 back-ends

1 G nuXmv

Define the formal operational semantics for a Simply Typed

Message-passing Calculus (STMC) for software concurrency.

Machine-checked proofs demonstrate the correctness of the

message passing model including broadcasting, multicasting

and guarded receive, and show the utility of the calculus by

proving the properties guaranteed delivery of messages, the

happens-before relation between the various actions, and

the mover properties of the possible actions

1 G Coq

Verify a vehicle-to-vehicle communication subsystem of an

autonomous vehicle platooning system

1 G Spin

Evaluate security of a Software Defined Network (SDN)

model, including firewalls, a switch-level security feature to

prevent malicious attacks, and a controller-level security

feature to prevent DOS attacks by verifying invariants

including reachability, isolation, loop freedom, no dead-ends

1 G nuXmv

Formally analyze three security protocols

Needham-Schroder Public Key Protocol, Otway- Rees

Protocol and Kerberos Protocol. Analysis of a protocol is

targeted towards detection of attacks in the protocol and

suggestive modifications to the protocol that can eradicate

the attack detected

1 G nuXmv

Two students compete to verify the same Traffic Alert and

Collision Avoidance System (TCAS) [34]: will explicit

model checking or symbolic model checking be the better

formal method for this task? One employs Holzmann’s

suggestions for optimizing the Spin model, the other takes

advantage of nuXmv’s newer back-end search algorithms.

The competition includes performance, ease-of-use,

modeling language expressibility, and usefulness of

counterexamples

2 G Spin, nuXmv

(continued)

126 K. Y. Rozier

Table 3. (continued)

Project description # U/G Tool(s) used

Verify a python implementation of an A*-based pathfinding

algorithm for a robot avoiding obstacles to traverse a maze via a

shortest path using Linear Temporal Logic MissiOn Planning

(LTLMoP). Validation included representing the same model in

multiple tools and cross-validating model behaviors

2 U/G (Py)NuSMV,

PRISM,

LTLMoP

Solve chess puzzles (puzzles over the pieces and rules of chess) via

model checking focusing first on the mate-in-one-move problem

2 G Spin

Verify a Mars rover mission sequence including coordination of a

launch vehicle, ejection of the rover, executing a landing sequence,

and commencing ground operations; confirm that mission goals are

upheld including when faults occur and mitigation plans are

executed

2 G nuXmv

Explore the level of privacy maintained by users despite

datamining, first through replication of a study on formal

verification of privacy constraints on loan applications, then by

devising a scalable model of e-voting machine data with

user-specified privacy settings. An unsuccessful venture in Coq was

followed by a successful re-imagining of the project using nuXmv

3 U2/G nuXmv, Coq

Compositionally verify an autonomous drone racing system with

dissimilar components: localization (PVS), path planning

(mCRL2). and the high-level architecture (Belief-Desire-Intent

programming in AgentSpeak using Jason, Spin). Each student

leads the verification of one subcomponent; ultimately the effort

was unsuccessful due to integration challenges

3 U/G2 PVS, mCRL2,

Spin

Three students compete using three different tools to solve the

same verification challenge (a Rubik’s cube) and compare their

results, performance, and which parts of the problem were

easier/harder with each tool; creative methods of cross-validation

took advantage of overlap between tools, e.g., nuXmv and MiniSat.

Models started with 2 × 2 × 2 cubes and scaled the difficulty and

size of the cubes

3 G Spin, nuXmv,

CBMC, MiniSat

and CaDiCaL

SAT solvers

Model and verify a realistic subsystem of UTM (UAS Traffic

Management) for near mid-air collision (NMAC) avoidance based

on [12,17,30,36]. Use nuXmv to verify preflight, enroute, and

emergency situations; further explore properties of enroute (like

probability of a route change to avoid an NMAC) using PRISM

3 G nuXmv, PRISM

Legend:

Number of students in the group

U All students in group are undergraduate students

G All students in group are graduate students

6 Conclusions and Outlook

In post-course surveys, students overwhelmingly identified details of tool use to
be the aspect of the course they struggled with most; this includes the challenge
of exposure to multiple new modeling/specification languages, details of tool
installation/setup/debugging, and the gap between the level of detail required
by formal methods tools versus their previous experiences, e.g., with pencil-
and-paper proofs and informal (or no) system requirements. The majority of
students identified the theorem proving tool (either PVS or Isabelle) as the
most difficult to learn. When asked in hindsight (a year or more after course

On Teaching Applied Formal Methods in Aerospace Engineering 127

completion) what aspect(s) of the course turned out to be most useful, nearly
every part of the course was listed by some student. The course project and the
survey of formal methods were each identified by over half of the former students
as most useful, citing in particular the perspective gained through experience.
Other popular responses include the students’ sound theoretical understanding
of formal methods, the comparative discussions of specification languages, and
in-class exercises (which some students felt so strongly about they questioned
the ability to scale the course to include more students or online students). Sev-
eral students particularly appreciated learning about the (ab)use of SAT solvers
for a variety of applications including scheduling, specification debugging, and
reduction of other problems to SAT. Nearly every student surveyed, both during
the course and in hindsight, wrote an impassioned essay about the paper presen-
tation section of the course, including the value of individualized feedback from
the professor and other students, the opportunity to improve their analysis/p-
resentation skills, exposure to the breadth of research frontiers and case studies
in formal methods, the perspective they gained on verification in the wild, and
the ability to steer the topics of the second half of the course to match the class’
interests.

When asked how the course could be improved, students have overwhelmingly
focused on small details of individual exercises; this feedback is continuously used
to improve lectures, slides, and assignment descriptions. Examples include more
in-class demonstrations of the quirkier aspects of tools, more details on indus-
try standards requiring formal methods, and more information on community
resources such as the active mailing lists for many tools, especially Isabelle and
PVS. Students have requested add-on or follow-on courses such as a research
paper reading group that offers an expanded version of the paper presentation
portion of the class, and a large-scale application option where students work
in groups to verify a real system over a whole semester simulating an industry
setting. This is consistent with the most-requested course improvement: each
semester students request more information on the end-to-end formal verifica-
tion process, such as a universal flow-chart with all of the aspects of verification
from initial conception to system maintenance laid out in fine detail.

Applied Formal Methods is currently taught as an elective; it counts toward
one required technical elective for undergraduate and graduate students in
Aerospace Engineering, Computer Science, and Computer Engineering, and has
(so far) always been approved for replacing technical electives in other areas of
engineering. Going forward, we look to integrate it as a required course in a track,
e.g., in an avionics or intelligent systems concentration or minor within aerospace
or in a cybersecurity or other interdisciplinary major. At its current size of 12–20
students per semester, the high level of participation and multiple presentations
by each student in the course is both practical and advantageous: each student
can participate actively in the course and receive personalized instruction in
applying formal methods to a project tailored to her/his interests. Maintaining
learning outcomes while potentially scaling the class to a larger size will be a
formidable challenge. End-of-semester student ratings of the course have been

128 K. Y. Rozier

consistently very high; if the course becomes required instead of purely elective,
some adjustments may have to be made to accommodate a broader audience
with more diverse interests.

One goal of publishing materials on the course is to receive feedback that can
lead to continuous improvement; another is to open course materials for others
to use and build upon. As formal methods teaching at the undergraduate and
beginning graduate levels becomes more widespread there may be enough mate-
rials across the teaching community to support a tool-wise central repository of
exercises, exam questions, and other teaching resources. We hope to contribute
to such a repository, especially for tools like nuXmv and Spin, which remain
popular for student use. Such materials could also be used to create industrial
courses, such as the PVS Course at NASA Langley research center. We are con-
tinuously looking for industrial guest speakers to visit or give virtual lectures on
their experiences applying formal methods in industrial practice. Traditionally,
these lectures have received rave reviews and resulted in extra students showing
up to class, in addition to those enrolled in the course. We hope to build up a
club of regular industrial guest speakers as well as new lecturers to continue to
inspire future students to apply formal methods in practice.

Acknowledgments. Information on our recent work can be found at: http://
laboratory.temporallogic.org. Thanks to the Aerospace Engineering departments at
Iowa State University and the University of Cincinnati for their forward thinking in
recognizing the need to develop such a course. AERE/COMS 407/507 was developed
over the Spring 2017, and Fall 2017 and 2018 semesters at ISU; parts of the class
were first developed during the Spring 2015 and 2016 semesters at UC. Thanks to
all of the students who actively participated in those courses, especially for coming
up with such fantastic half-semester projects. Some course materials were inspired by
or directly derived from The TeachLogic Project (https://www.cs.rice.edu/∼tlogic/);
special thanks goes to Ian Barland, John Greiner, and Moshe Vardi for their brilliant
teaching tools. Thanks to the NASA Langley Formal Methods Group for providing an
excellent PVS course both in-person [6] and online with a rich collection of regularly-
updated teaching materials. (https://shemesh.larc.nasa.gov/PVSClass2012/). Thanks
to the many guest speakers including: Nikolaj Bjørner, Jonathan Hoffman, Yogananda
Jeppu, César Muñoz, Lucas Wagner.

References

1. Ameur, Y.A., Boniol, F., Wiels, V.: Toward a wider use of formal methods for
aerospace systems design and verification. Int. J. Softw. Tools Technol. Transf.
12(1), 1–7 (2010)

2. Basir, N., Denney, E., Fischer, B.: Constructing a safety case for automatically
generated code from formal program verification information. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 249–262. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4 22

3. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48119-2 22

http://laboratory.temporallogic.org
http://laboratory.temporallogic.org
https://www.cs.rice.edu/~tlogic/
https://shemesh.larc.nasa.gov/PVSClass2012/
https://doi.org/10.1007/978-3-540-87698-4_22
https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22

On Teaching Applied Formal Methods in Aerospace Engineering 129

4. Bérard, B., et al.: Systems and Software Verification: Model-checking Techniques
and Tools. Springer, Heidelberg (2013). https://www.amazon.com/Systems-Soft-
ware-Verification-Model-Checking-Techniques/dp/3642074782/ref=sr 1 1?ie=
UTF8&qid=1483572091&sr=8-1&keywords=systems+and+software+verification

5. Bittner, B., et al.: An integrated process for FDIR design in aerospace. In:
Ortmeier, F., Rauzy, A. (eds.) IMBSA 2014. LNCS, vol. 8822, pp. 82–95.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12214-4 7

6. Butler, R., et al.: NASA/NIA PVS Class 2012. NIA, Hampton, Virginia, USA,
October 9–12 (2012). https://shemesh.larc.nasa.gov/PVSClass2012/online.html

7. Butler, R., Maddalon, J., Geser, A., Muñoz, C.: Simulation and verification I:
formal analysis of air traffic management systems: the case of conflict resolution
and recovery. In: Proceedings of the 35th Conference on Winter Simulation: Driving
Innovation, pp. 906–914. Winter Simulation Conference (2003)

8. CENELEC, EN50126: Railway applications-the specification and demonstration of
reliability. Availability, Maintainability and Safety (RAMS) (2001). https://www.
cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html

9. CENELEC, EN50128: Railway applications-communication, signaling and process-
ing systems-software for railway control and protection systems (2011). https://
www.cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html

10. Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the
formal and the non-formal. In: 2012 IEEE 17th International Conference on Engi-
neering of Complex Computer Systems, pp. 199–208. IEEE (2012)

11. EN50129, CENELEC: Railway applications-communication, signalling and pro-
cessing systems-safety related electronic systems for signalling. British Standards
Institution, United Kingdom. ISBN, pp. 0580–4181 (2003)

12. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne colli-
sion avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 620–635. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8 54

13. Fisher, M.: An introduction to practical formal methods using temporal logic,
vol. 82. Wiley Online Library (2011). https://www.amazon.com/Introduction-
Practical-Formal-Methods-Temporal-ebook/dp/B005E8AID2/ref=sr 1 1?ie=
UTF8&qid=1483648485&sr=8-1&keywords=practical+formal+methods+using+
temporal+logic

14. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 1

15. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and bayesian net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 215–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 18

16. Guarro, S., et al.: Formal framework and models for validation and verification
of software-intensive aerospace systems. In: AIAA Information Systems-AIAA
Infotech@ Aerospace, p. 0418 (2017)

17. Kochenderfer, M.J., Chryssanthacopoulos, J.: Robust airborne collision avoidance
through dynamic programming. Massachusetts Institute of Technology, Lincoln
Laboratory, Project Report ATC-371 (2011)

https://www.amazon.com/Systems-Soft-ware-Verification-Model-Checking-Techniques/dp/3642074782/ref=sr_1_1?ie=UTF8&qid=1483572091&sr=8-1&keywords=systems+and+software+verification
https://www.amazon.com/Systems-Soft-ware-Verification-Model-Checking-Techniques/dp/3642074782/ref=sr_1_1?ie=UTF8&qid=1483572091&sr=8-1&keywords=systems+and+software+verification
https://www.amazon.com/Systems-Soft-ware-Verification-Model-Checking-Techniques/dp/3642074782/ref=sr_1_1?ie=UTF8&qid=1483572091&sr=8-1&keywords=systems+and+software+verification
https://doi.org/10.1007/978-3-319-12214-4_7
https://shemesh.larc.nasa.gov/PVSClass2012/online.html
https://www.cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html
https://www.cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html
https://www.cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html
https://www.cenelec.eu/standardsdevelopment/ourproducts/europeanstandards.html
https://doi.org/10.1007/978-3-642-54862-8_54
https://doi.org/10.1007/978-3-642-54862-8_54
https://www.amazon.com/Introduction-Practical-Formal-Methods-Temporal-ebook/dp/B005E8AID2/ref=sr_1_1?ie=UTF8&qid=1483648485&sr=8-1&keywords=practical+formal+methods+using+temporal+logic
https://www.amazon.com/Introduction-Practical-Formal-Methods-Temporal-ebook/dp/B005E8AID2/ref=sr_1_1?ie=UTF8&qid=1483648485&sr=8-1&keywords=practical+formal+methods+using+temporal+logic
https://www.amazon.com/Introduction-Practical-Formal-Methods-Temporal-ebook/dp/B005E8AID2/ref=sr_1_1?ie=UTF8&qid=1483648485&sr=8-1&keywords=practical+formal+methods+using+temporal+logic
https://www.amazon.com/Introduction-Practical-Formal-Methods-Temporal-ebook/dp/B005E8AID2/ref=sr_1_1?ie=UTF8&qid=1483648485&sr=8-1&keywords=practical+formal+methods+using+temporal+logic
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-319-11164-3_18

130 K. Y. Rozier

18. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: Proceedings of
Formal Methods in Computer-Aided Design (FMCAD 2015), Austin, Texas, USA.
IEEE/ACM, September 2015

19. Radio Technical Commission for Aeronautics: DO-333 – formal methods supple-
ment to DO-178C and DO-278A (2011). https://www.rtca.org/content/standards-
guidance-materials

20. Radio Technical Commission for Aeronautics: DO-178C/ED-12C – software con-
siderations in airborne systems and equipment certification (2012). https://www.
rtca.org/content/standards-guidance-materials

21. Radio Technical Commission for Aeronautics (RTCA): DO-178B: Software consid-
erations in airborne systems and equipment certification, December 1992

22. Radio Technical Commission for Aeronautics (RTCA): DO-254: Design assurance
guidance for airborne electronic hardware, April 2000

23. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8 24

24. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent hardware-enabled sensor and
software safety and health management for autonomous UAS. Technical Memo-
randum NASA/TM-2015-218817, NASA, NASA Ames Research Center, Moffett
Field, CA 94035, USA, May 2015

25. Rozier, K.: Linear temporal logic symbolic model checking. Comput. Sci. Rev. J.
5(2), 163–203 (2011). https://doi.org/10.1016/j.cosrev.2010.06.002

26. Rozier, K., Rozier, E.: Reproducibility, correctness, and buildability: the three
principles for ethical public dissemination of computer science and engineering
research. In: IEEE International Symposium on Ethics in Engineering, Science,
and Technology, Ethics 2014, pp. 1–13. IEEE, May 2014

27. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73370-6 11

28. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
417–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0 31

29. Rozier, K.Y., Vardi, M.Y.: Deterministic compilation of temporal safety properties
in explicit state model checking. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 243–259. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 23

30. NASA UTM Research Transition Team (RTT): NASA UTM NextGen concept of
operations v1.0, May 2018. https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-
v1.0.pdf

31. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA
Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference,
pp. 1–16 (2009)

32. Rushby, J.: Logic and epistemology in safety cases. In: Bitsch, F., Guiochet,
J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 1–7. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2 1

https://www.rtca.org/content/standards-guidance-materials
https://www.rtca.org/content/standards-guidance-materials
https://www.rtca.org/content/standards-guidance-materials
https://www.rtca.org/content/standards-guidance-materials
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-39611-3_23
https://doi.org/10.1007/978-3-642-39611-3_23
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://doi.org/10.1007/978-3-642-40793-2_1

On Teaching Applied Formal Methods in Aerospace Engineering 131

33. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23820-3 15

34. U.S. Department of Transportation Federal Aviation Administration: Introduc-
tion to TCAS II version 7.1, February 2011. hQ-111358. https://www.faa.gov/
documentlibrary/media/advisory circular/tcas%20ii%20v7.1%20intro%20booklet.
pdf

35. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9 1

36. Wei, P., Atkins, E., Schnell, T., Rozier, K.Y., Hunter, G.: NSF PFI:BIC:
pre-departure dynamic geofencing, en-route traffic alerting, emergency landing
and contingency management for intelligent low-altitude airspace UAS traf-
fic management, July 2017. https://www.nsf.gov/awardsearch/showAward?AWD
ID=1718420

37. Wiels, V., Delmas, R., Doose, D., Garoche, P.L., Cazin, J., Durrieu, G.: Formal
verification of critical aerospace software. AerospaceLab (4), 1–8 (2012). https://
hal.archives-ouvertes.fr/hal-01184099

38. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. In: Proceedings of the 12th
International Workshop on Automated Verification of Critical Systems (AVoCS
2012). Electronic Communications of the EASST, vol. 53. European Association
of Software Science and Technology (2012)

39. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Sci. Comput. Program. J.
96(3), 337–353 (2014)

40. Zhao, Y., Rozier, K.Y.: Probabilistic model checking for comparative analysis of
automated air traffic control systems. In: Proceedings of the 33rd IEEE/ACM
International Conference On Computer-Aided Design (ICCAD 2014), San Jose,
California, USA, pp. 690–695. IEEE/ACM, November 2014

https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15
https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf
https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf
https://www.faa.gov/documentlibrary/media/advisory_circular/tcas%20ii%20v7.1%20intro%20booklet.pdf
https://doi.org/10.1007/3-540-45319-9_1
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1718420
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1718420
https://hal.archives-ouvertes.fr/hal-01184099
https://hal.archives-ouvertes.fr/hal-01184099

	On Teaching Applied Formal Methods in Aerospace Engineering
	1 Introduction
	2 Approach
	3 Tools and Techniques
	4 Research Paper Presentations
	4.1 Professor's Presentation Evaluation Form
	4.2 Student's Presentation Evaluation Form

	5 Student Projects
	5.1 Initial Project Plan: Statement of Work
	5.2 Progress Report and Preliminary Results
	5.3 Final Report and Presentation to the Class
	5.4 Example Student Projects

	6 Conclusions and Outlook
	References

