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Abstract—Model Based Systems Engineering (MBSE) provides
a single platform capable of defining complex, multidisciplinary
systems, but commonly-used tools such as Systems Modeling
Language (SysML) lack the ability to formally validate and
verify these systems. Symbolic model checking operates on system
models of similar levels of abstraction to SysML, providing a
push-button technique for ensuring the possible behavior set
always obeys temporal requirements, e.g., for safe operation.
We propose a translation method from SysML activity diagrams
to the popular symbolic model checker nuXmv to enable their
formal verification in four main steps: main module definition,
submodule definition, activity diagram organization, and activity
diagram translation. We apply this process to the Autonomous
Artificial Pancreas System (AAPS) as a trade study. We then
verify and validate the AAPS nuXmv model against a set of
specifications derived from the AAPS safety requirements.

Index Terms—MBSE, SysML, nuXmv, Cameo, Activity Dia-
gram, Model Checking

I. INTRODUCTION

As systems continue to become larger and more complex,
so do the methodologies needed to design them. One increas-
ingly used methodology is Model Based Systems Engineering
(MBSE). MBSE provides a single platform capable of defining
large, complex, multidisciplinary systems at various levels of
abstraction. MBSE supports the development of requirements,
design, and analysis of entire systems through all phases of
the life cycle [1]; we focus on MBSE using Systems Modeling
Language (SysML) [2]. As the expectations of the capabilities
of modern systems have increased, so has the need to provide
robust validation and verification, especially in safety-critical
systems like medical devices.

The Center for Devices and Radiological Health (CDRH)
division of the FDA aims to provide “safe, effective, and
high-quality medical devices” through regulation, formally
capturing a firm’s removal or correction of incompliant devices
through recalls [3]. According to the Medical Device Recall
Report for FY2003 to FY2012, medical device software is the
leading cause of medical device recalls [4]. Medical device
software plays a critical role in the safety of medical devices.
This results in systems that are both safety-critical and highly
dependent on software to execute, creating an ideal use case
for model checking to provide formal system validation and
verification.

Artifacts for reproducibility including all models and specifications appear
at temporalllogic.org/research/SESS2022

We focus on validation and verification of the Autonomous
Artificial Pancreas System (AAPS). The AAPS is a hybrid
closed-loop insulin pump system designed for patients with
Type 1 diabetes and is similar to commercially available
devices like the Tandem T:slim X2 insulin pump with Control-
IQ technology and the Medtronic MiniMed 770G insulin
pump system. The AAPS consists of the Continuous Glucose
Monitor (CGM) and the AAPS module. The AAPS module
houses the system software and includes supplies of insulin
and glucagon. The goal of the AAPS is to maintain the pa-
tient’s blood glucose level within a predefined range, through
the administration of insulin or glucagon while minimizing
Human-Machine Interaction (HMI) through sensing and au-
tomation. The system functions in a cycle as follows: the
CGM measures the blood glucose level of the patient, the
CGM automatically transmits the blood glucose level to the
AAPS module, then the AAPS control algorithm determines
if the patient requires insulin or glucagon administration and
how much to administer, the AAPS then waits for the next
CGM measurement. This process repeats while the system is
operational. The AAPS also supports connectivity to wearable
devices, fitness applications, Blood Glucose Meter (BGM),
medical databases, and medical care providers.

We used the nuXmv symbolic model checker version 2.0.0
[5] to validate and verify the AAPS model. nuXmv provides
synchronous finite-state system analysis, taking as input a
system model and set of operational requirements, and re-
turning either a proof that the system always upholds the
requirements or a counterexample detailing a system trace
where it does not. Our translation takes advantage of the
Boolean and enumeration SMV modeling language variable
types [6].

Our translation from SysML to SMV also relies upon the
nuXmv expression definition constructs: constant expressions,
basic expressions, and simple and next expressions [6]. Since
the AAPS requirements either represent system invariants or
temporal pattern we can draw on timelines, we encapsulate
them precisely and unambiguously using Linear Temporal
Logic (LTL) [7].

We propose a process for translation from SysML to nuXmv
encompassing the SysML state machine and activity diagrams
used in the AAPS SysML definition. We demonstrate the
process by formally validating and verifying the AAPS and
release all artifacts necessary for formal verification and

temporalllogic.org/research/SESS2022


validation of any SysML system primarily defined by state
machine diagrams and activity diagrams.

To the best of our knowledge no previous research has ver-
ified a safety-critical medical device in nuXmv from this type
of SysML model, and existing translations don’t fully cover
state machine and activity diagrams. Some papers present
details regarding SysML state machine diagram [8], [9] and
block definition diagram [10], [11] conversion to NuSMV
for model checking, but do not cover activity diagrams.
Other papers discuss the translation of activity diagrams to
probabilistic models, then utilize other types of verification
tools such as the PRISM probabilistic, explicit model checker
[12], [13], [14]. Applying formal methods to safety-critical
medical devices is a burgeoning area of research [15], [16].
We aim to expand the use of formal medical device verification
via extending SysML translations to include state machine
diagram and activity diagrams and enable scalable verification
via symbolic model checking.

The remainder of the paper is organized as follows. The
SysML model, including a description of the AAPS system
diagram types, appears in Section II. Section III provides
the methodology we designed to translate the SysML state
machine diagram and activity diagrams to nuXmv. Example
automata and an example activity diagram further illustrate the
system and translation execution. Verification and validation
of the model, including example LTL specifications, appear
in Section IV. Section V discusses lessons learned. Section
VI concludes with avenues for future work in medical device
verification.

II. AUTONOMOUS ARTIFICIAL PANCREAS SYSTEM
SYSML MODEL

The AAPS system was developed in SysML. SysML con-
sists of nine different types of diagrams; the AAPS uses
two main diagram types: activity diagrams and state machine
diagrams. The activity diagrams hold most of the usable
information in the AAPS SysML model. Each activity diagram
describes a small system action, and the combination of all
activity diagrams accurately characterizes all possible system
actions. The activity diagrams are independent of each other,
and only connected through other diagram types. Typically,
SysML block definition diagrams connect the activity dia-
grams [17]; however, the AAPS SysML model connects the
activity diagrams through the state machine diagram, which
defines the higher-level system states.

In addition to these two main diagram types, the AAPS
model also contains a detailed set of requirements. We use
these requirements to generate the formal specifications re-
quired to prove the model functioned properly.

III. TRANSLATION FROM SYSML TO NUXMV

We use a four-step translation process to translate the
SysML model into nuXmv.

SysML to nuXmv Translation Process
1) Main Module Definition: Use the SysML state machine

diagram to define the main module in nuXmv
2) Submodule Definition: Define submodules from the

SysML state machine diagram
3) Activity Diagram Organization: Categorize activity dia-

grams into corresponding modules
4) Activity Diagram Translation: Convert activity diagram

information into nuXmv

A. Main Module Definition

The overall SysML state machine diagram is the highest-
level overview of the AAPS. We use this diagram to generate
the automaton shown in Figure 1.

Fig. 1. Full system automaton built from the system state machine diagram

The state machine diagram shows the high-level system
behavior and state switching between the different modes
within the AAPS. Figure 1 corresponds exactly to the system
modes in the state machine diagram. This automaton then
gives a baseline for writing the main module, the high-level
control module that defines transitions between the submod-
ules in nuXmv. We define operational and maintenance modes
as individual submodules in nuXmv due to their additional
complexity, while the main module defines Start Up and
Shutdown.

The AAPS main module has an enumerated mode variable
with StartUp, Operational, Maintenance, and Off
fields to define which mode the system was in. Boolean request
variables denote the state of each of the mode transitions; a
request must be active for the system to switch modes in the
next time step. Step III-A translates only the system modes
and transitions; we add all other definitions in later steps.

B. Submodule Definition

The AAPS state machine diagram also provides informa-
tion on the activities within the operational and maintenance



modes. We use this additional information to develop the
automata in Figures 2 and 3. We model both automata as
submodules within the main module in nuXmv.

Fig. 2. Operational mode automaton showing the functional variable and the
five external device connections

The operational mode consists of a functional flag to de-
termine the AAPS state and five external device connections.
The OperationalMode module controls the state of the
functional variable and the status of each external device.
We define the Functionality enumerated variable with
four states: Functional, Degraded, Failed, and Off.
We define each external device as a separate submodule
within operational mode according to their respective activity
diagrams.

Fig. 3. Maintenance mode automaton showing the four maintenance activities
and the ready state

Maintenance mode consists of four maintenance tasks and a
ready state. We define a TaskRequest enumerated variable
to control the transitions into and out of the maintenance
tasks and a MaintenanceTask enumerated variable to
set the current state of maintenance mode. Each individual
maintenance task is a submodule within maintenance mode.

C. Activity Diagram Organization

We define 12 different modules from the state machine di-
agram: Main, OperationalMode, MaintenanceMode, CGMRe-
place, GlucagonRefill, IBIT, InsulinRefill, BGM, FitnessApp,
MCP, MedicalDB, and WearableDevice. The OperationalMode
and MaintenanceMode modules are inside of the Main module
within nuXmv. The maintenance task modules are inside of the
MaintenanceMode module, and the connected device modules
are inside of the OperationalMode module within nuXmv. We
assigned 42 of the 44 original SysML activity diagrams to a
module that best characterized its functionality. We omit the
two unassigned activity diagrams because they contribute little
to the understanding and functionality of the final model.

D. Activity Diagram Translation

Once we assign each activity diagram to a module, we then
translate the diagrams into the SMV modeling language. The
activity diagram translations vary widely; some were intensive
to model and required changes across several modules, while
others required changing only a single variable. This difference
in modeling intensity is related to the scope of the activity
diagrams. The simpler activity diagrams were low level and
only impacted a small area of the system, while some of the
activity diagrams, such as Respond to Critical System Failure
impacted several modules.

The Share Data with MCP activity diagram is one of the
simpler activity diagrams; see Figure 4. It details the process
of receiving a patient data request from the medical care
provider (MCP), authenticating the request, and accepting
the request for data or rejecting the request. We model this
entire diagram using a single enumerated variable called
PatientData in the MCP module in nuXmv. Table I lists
the possible values of PatientData.

Fig. 4. SysML Share Data with MCP activity diagram example

The MCP module needs to connect to the operational mode
module to exchange patient data; PatientData gets set to
None by default if the MCP is not connected. If nothing is
currently happening (PatientData is None), the variable



TABLE I
PATIENT DATA ENUMERATION

Value Name Description
None No state of the activity diagram is currently happening

Requested The MCP has received a request
Authenticating Currently authenticating the request

Provided The MCP accepted the request, provided data
Rejected The MCP rejected the request

can remain in that state; a new request switches this variable to
Requested. After spending one time step in Requested,
it switches to Authenticating. The authentication part
of the activity diagram is self-looping, meaning the nuXmv
module always has the option to stay in that state. This
means that for every step spent in the Authenticating
mode, the model can choose between three different options:
Authenticating, Provided or Rejected. If the data
is provided, or the request is rejected, the variable will then
return to the None state, and the process may start over again.

We continually tested our model against the written specifi-
cations to ensure correctness. We also used other methods of
checking the model such as the nuXmv functions check_fsm
and print_reachable_states to ensure the model did
not have any deadlock states and ensure that the number of
states was within reason. In the final model, no deadlock states
exist, and the number of reachable states is within the expected
bounds, i.e., comparable to the original SysML specification.
The total number of reachable states for the AAPS nuXmv
model is 10977 out of 1.83459e13 possible states. This is
expected due to the large number of enumerated variable
combinations that are not allowed due to the SysML model
definition. There were several points during model develop-
ment where the check_fsm function returned a deadlock
state, revealing an incorrect transition or variable assignment
somewhere in our model. To fully verify and validate the
model requires specification checking [18].

IV. VERIFICATION AND VALIDATION OF MODEL

A. Specification Debugging via Universal Model

The universal model [19] contains all possible current and
future assignments for each variable; we utilized this model
in nuXmv to check if the written specifications are satisfiable.
A given LTL specification φ is satisfiable if and only if
the negation ¬φ produces a counterexample representing a
satisfying assignment when checked against the universal
model. We checked all LTL specifications, their negations,
and the conjunction of specifications for satisfiability, per
the specification debugging practice introduced in [19]. This
ensures that every specification is possible, not a tautology,
and that all specifications can hold in the same system at the
same time.

B. Specifications

We encapsulate the AAPS requirements as 29 LTL spec-
ifications [20] specifications and debug them. We also val-
idate our model with 11 LTL and 94 CTL specifications.

Our debugging effort includes code inspection and checking
for satisfiability using the universal model. Model checking
revealed spurious counterexamples caused by mistakes in the
specification set. These are unexpected “passing” results that
triggered further specification debugging. One such result
was a trace where the system entered a degraded state in
operational mode and switched to maintenance mode. At this
point, the system was allowed to switch back to operational
mode in a degraded state. This trace occurred because SysML
does not specify a prioritization of tasks to be performed.
We insert an assumption that the necessary maintenance tasks
are to be completed and the degraded flag resolved before
switching to operational mode.

We created four benchmarks using the information in the
SysML model to capture the level and type of functionality
that the system achieves. The verification specifications are
grouped and ordered based on system functionality. Table II
lists the benchmark levels and a brief description of each level.
We ordered the four benchmark levels by their importance to
the functionality of the AAPS from low level safety-critical
features to high level convenience features. If all the specifi-
cations in a benchmark pass, then the system is considered
to complete that benchmark functionality. We consider the
AAPS to meet minimum safety requirements if it passes the
first two benchmarks, meaning that the system works properly
in operational mode and responds appropriately if it enters a
degraded or failed state.

TABLE II
SYSTEM BENCHMARKS

Benchmark Description
Safety-Critical Medication properly administered while operational
Failure Safety Proper responses to system failures

Mode Transitions Pre-transition and post-transition conditions met
Connected Devices Alert messages sent and received

C. Results

We present a total of 132 specifications that span both
validation and verification of the model. The verification
specifications verify that the AAPS requirements hold for the
nuXmv translation of the model, and the validation specifica-
tions validate that the nuXmv model performs all the intended
functions, i.e., matches the SysML model [21]. We model-
checked 105 specifications to validate our nuXmv model,
while the remaining 29 specifications verify the AAPS require-
ments. We wrote all our specifications to ensure that nuXmv
returning a true value would validate or verify the respective
part of the system. NuXmv provides a counterexample trace
for false results, enabling us to find errors in the model and
correct them.

1) Validation: Out of our set of 105 validation specifica-
tions, 18 test specific system behaviors. These specifications
cover shutdown mode, maintenance mode, operational mode,
and app connectivity. The other 87 specifications serve to
ensure reachability for all valid variable assignments within
the AAPS nuXmv model. Table III provides a summary of
the validation results.



TABLE III
SUMMARY OF VALIDATION RESULTS

Specification Type Number of Specs Result
Shutdown Mode 3 PASS

Maintenance Mode 10 PASS
Operational Mode 2 PASS
App Connectivity 3 PASS

Valid Variable Assignment 87 PASS

We wrote validation specifications in tandem with the trans-
lation of the model from SysML. We first wrote specifications
to validate the high level system aspects, writing the rest of the
validation specifications when the low-level functionality was
implemented in nuXmv. The following example is one of the
system behavior specifications used to validate maintenance
mode.

�¬{(IBIT = Running) ∧ [(Refill Insulin = Running) ∨

(Refill Glucagon = Running) ∨ (Replace CGM = Running)]}

The given LTL formula states that IBIT shall never run
while insulin needs refilling, glucagon needs refilling, or the
CGM needs replacing. We created three other variations of
this LTL formula to validate that the AAPS nuXmv model
only allows one maintenance task to run at any given time.

1) �¬{(Refill Insulin == Running) ∧ [(IBIT == Running) ∨
(Refill Glucagon == Running) ∨ (Replace CGM ==
Running)]}

2) �¬{(Refill Glucagon == Running) ∧ [(Refill Insulin ==
Running) ∨ (IBIT == Running) ∨ (Replace CGM ==
Running)]}

3) �¬{(Replace CGM == Running) ∧ [(Refill Insulin ==
Running) ∨ (Refill Glucagon == Running) ∨ (IBIT ==
Running)]}

We derived these specifications directly from the state
machine diagram in the SysML model. In the state machine
diagram, only one state can be active at any time unless other-
wise stated. In maintenance mode, only one of the maintenance
activities can be in progress at any given time. We then wrote
the above specifications to validate that the assertion held
true through our translation into nuXmv. Most of the other
validation specifications ensure that states are reachable and
that all variables are used. We wrote these validation checks
in pairs for each variable.

E♦FailF lag E♦¬FailF lag

The above specifications ensure that there exists at least
one state in the system where the FailFlag variable is
enabled, and at least one state where the FailFlag variable
is disabled. If either of these specifications return false, the
variable only has one possible assignment, and either the
model behavior needs to be fixed, or the variable has no
function and can be removed.

Model definition and specification are two of the main
takeaways from the validation specifications. The AAPS model
was already a fully defined model and we did not find any
major errors in the model. We did find some inconsistencies
in the model that needed to be properly defined when fully

verifying the AAPS. One of these inconsistencies was the exit
behavior of maintenance mode. The IBIT activity diagram
specifies that the system will return to operational mode if
the IBIT passes with no critical failures. This conflicts with
the general flow of the state machine diagram as well as the
Perform AAPS System Maintenance, Enable Maintenance Ac-
tivities, and Disable Maintenance Activities activity diagrams.
These diagrams all show that upon finishing a maintenance
activity, the system will not necessarily return to operational
mode, but may stay in maintenance mode and wait for another
maintenance request. We discovered this problem through
the failure of a validation specification designed to test if
operational mode is guaranteed after the IBIT completed if
there was no shutdown request. When the specification failed,
we reviewed the model and found the inconsistency. In this
case, we updated the specification to match the model and the
three other activity diagrams.

2) Verification: A total of 29 verification specifications,
distributed between each of the system benchmarks defined in
Table II verified the given AAPS requirements all hold over the
AAPS as defined. Table IV shows the specification breakdown.

TABLE IV
SUMMARY OF VERIFICATION RESULTS

Benchmark Number of Specs Result
Safety-Critical 6 PASS
Failure Safety 7 PASS

Mode Transitions 11 PASS
Connected Devices 5 PASS

1) �(((Mode = Operational) ∧ (PatientStatus == LowBS) ∧
¬(Functionality == Failed)) → (BloodSugarAdjustment ==
DeliverGlucagon))

2) �(((Mode = Operational) ∧ (PatientStatus == HighBS) ∧
¬(Functionality == Failed)) → (BloodSugarAdjustment ==
DeliverInsulin))

3) �(((Mode = Operational) ∧ (PatientStatus == Normal)) →
(BloodSugarAdjustment == None))

These three example LTL formulas verify medication ad-
ministration, the aspect of the system that is the most safety-
critical. We intentionally designed the example LTL formulas
to test the AAPS nuXmv model from the highest level possi-
ble. More specifically, the LTL formulas verify that when the
system is operational, the patient receives glucagon when their
blood sugar is low, insulin when their blood sugar is high, and
nothing when their blood sugar is within the normal range. All
29 verification specifications passed, indicating that the system
operates as originally designed.

V. DISCUSSION OF LESSONS LEARNED

This case study provides an example translation of a safety-
critical medical system SysML model into nuXmv for formal
verification and validation. Verification and validation allow
the system developers to have confidence in the model before
moving forward to future development. We were able to catch
model inconsistencies and specify necessary system behaviors
in the AAPS through this process.

Timing is one of the major difficulties when translating a
model from SysML to nuXmv. SysML does not have any



native support for timing or step characteristics, while nuXmv
is inherently step-based with its states. We made several as-
sumptions about the model to overcome this difficulty because
we did not create the model ourselves. This timing information
would be known if we were the original system designers.
The timing definition is required to both translate the model
and write the specifications. We wrote the specifications in
tandem with the model translation to ensure that the timing
assumptions were consistent across both aspects. We primarily
dealt with these timing difficulties by using request variables,
where a variable would activate to signal the action in the
following time step.

Every SysML model will have differences depending on the
system being modeled. In the AAPS model, the important sys-
tem capabilities are located in the activity diagrams; however,
this may not be the case for all systems. The proposed process
will work to translate the state machine diagram and activity
diagrams to nuXmv, but some functionality may be missed
if a given model has important capabilities in other diagram
types.

VI. CONCLUSION

This paper explored the formal verification and validation of
a complex medical system SysML model through translation
to nuXmv. SysML is widely used across the industry for
modeling and system specification [22], making it a perfect
starting point for formal model verification. The SysML semi-
formal model is converted into nuXmv for formal system
safety verification. nuXmv is the ideal tool for this, giving the
ability to verify and validate all system safety specifications
while providing plenty of modularity for any system.

This process is scalable to any system size due to the
modularity provided. A further system breakdown may be
required for a larger system, and a smaller system could use a
more simplified approach. Symbolic model checking through
nuXmv provides a more efficient approach for larger models
and is more scalable than other explicit model checking
methods [7]. The use of nuXmv modules also eases the
additional system complexity.

This verification effort started as a project for an Applied
Formal Methods course [23]; this effort demonstrates that
engineers with an introductory background in formal methods
can successfully apply our techniques.

A. Future Work

The methodology proposed opens a new avenue into the
study of formal methods analysis in complex medical systems.
The provided system translation technique can be further
researched to include additional SysML elements such as a
more robust requirement translation process. The provided
technique is not currently easily workable into an automated
tool for use with SysML models, but future revision of the
process could yield a more straightforward and implementable
process.
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