Satisfiability Checking for Mission-Time LTL

Jianwen Li¹ Moshe Y. Vardi² Kristin Y. Rozier¹

1. Iowa State University, Ames, IA, USA

2. Department of Computer Science, Rice University, USA

July 17, 2019

Mission-Time LTL (MLTL)

Application:

• NASA Robonat 2 system

• Runtime verification community interests - RV 2018 competition benchmarks

MLTL is designated for describing systems that focus on

- finite behaviors with
- bounded and discrete time intervals.

Mission-Time LTL (MLTL)

MLTL formulas reason about linear timelines:

- finite set of atomic propositions $\{p \ q\}$
- Boolean connectives: \neg , \wedge , \vee , and \rightarrow
- temporal connectives:

Mission-Time LTL (MLTL)

	MLTL	MTL	LTL	LTL_{f}
Model Length	finite	infinite	infinite	finite
Interval Domain	integer	real	-	-
Interval Range	bounded	unbounded	-	-

- MTL: Metric Temporal Logic
- LTL: Linear Temporal Logic
- LTL_f: LTL over finite traces

MLTL Satisfiability Checking (MLTLSAT)

Given an MLTL formula φ , is there a finite trace that is a model of φ ?

- $\Diamond_{[0,3]} p \land \Box_{[0,2]} \neg p$ is satisfiable;
- $\Diamond_{[0,3]} p \land \Box_{[0,4]} \neg p$ is unsatisfiable;

MLTL Satisfiability Checking (MLTLSAT)

Given an MLTL formula φ , is there a finite trace that is a model of φ ?

- $\Diamond_{[0,3]} p \land \Box_{[0,2]} \neg p$ is satisfiable;
- $\Diamond_{[0,3]} p \land \Box_{[0,4]} \neg p$ is unsatisfiable;

- MLTLSAT is a fundamental problem of MLTL reasoning;
- MLTLSAT is helpful for writing consistent MLTL specifications.

- Prove MLTLSAT is **NEXPTIME-complete**;
- Reduce MLTLSAT to LTL_fSAT, LTLSAT and LTL model checking;
- Present a practical SMT-based checking algorithm for MLTLSAT;
- Show the SMT-based approach has the most scalable performance.

Theorem 1

The complexity of MLTL satisfiability checking is **NEXPTIME-complete**.

Upper: For an MLTL formula φ , there is an LTL_f formula ψ s.t.

- φ and ψ are equi-satisfiable;
- $|\psi| = K \times |\varphi|$ (K is the maximal decimal integer in the intervals of φ).
- ψ contains only \mathcal{X}/\mathcal{N} ;
- A model of length $O(|\psi|)$ exists iff ψ is satisfiable.

Theorem 1

The complexity of MLTL satisfiability checking is **NEXPTIME-complete**.

Lower: Given a nondeterministic Turing machine M and an integer k,

- Construct the MLTL formula φ_M with length of O(k);
- φ_M is satisfiable iff M accepts the empty tape in 2^k steps;
- MLTL intervals are written in decimal, so we can ensure |φ_M| is in O(k).

- MLTLSAT via LTL_fSAT (Theorem 1)
- MLTLSAT via LTLSAT (LTL_fSAT is reducible to LTLSAT)
- MLTLSAT via LTL model checking (LTLSAT is reducible to LTL model checking)

Given an MLTL formula φ ,

- f_p: Int → Bool, a monadic predicate representing p ∈ Σ_φ;
 fol(φ, k, len) for φ (k, len ∈ N):
 - $\mathsf{fol}(p,k,\mathit{len}) = (\mathit{len} > k) \land f_p(k) \text{ for } p \in \Sigma;$
 - $\operatorname{fol}(\neg \xi, k, \operatorname{len}) = (\operatorname{len} > k) \land \neg \operatorname{fol}(\xi, k, \operatorname{len});$
 - $\mathsf{fol}(\xi \land \psi, k, \mathit{len}) = (\mathit{len} > k) \land \mathsf{fol}(\xi, k, \mathit{len}) \land \mathsf{fol}(\psi, k, \mathit{len});$
 - $\operatorname{fol}(\xi \ \mathcal{U}_{[a,b]} \ \psi, k, \operatorname{len}) = (\operatorname{len} > a + k) \land \exists i.((a + k \le i \le b + k) \land \operatorname{fol}(\psi, i, \operatorname{len} i) \land \forall j.((a + k \le j < i) \rightarrow \operatorname{fol}(\xi, j, \operatorname{len} j))).$

k: Index where the formula is evaluated; len: Model length. $S(fol(\varphi, k, n))$: SMT-LIB v2 encoding.

- $S(fol(p, k, len)) \longrightarrow (and (> len k) (f_p k))$
- $S(\neg fol(\varphi, k, \mathit{len})) \longrightarrow (and (> \mathit{len} \ k) (not \ S(fol(\varphi, k))))$
- $S(\operatorname{fol}(\varphi_1 \land \psi, k, \operatorname{len}) \longrightarrow (\operatorname{and} (> \operatorname{len} k) (\operatorname{and} S(\operatorname{fol}(\varphi_1, k, \operatorname{len}))))$ $S(\operatorname{fol}(\psi, k, \operatorname{len}))))$
- $S(\operatorname{fol}(\varphi_1 \ \mathcal{U}_{[a,b]} \ \psi, k, \operatorname{len})) \longrightarrow (\operatorname{and} (> \operatorname{len} a + k) (\operatorname{exists} (i \operatorname{Int}) (\operatorname{and} (\leq (+ a k) i) (\geq i (+ b k)) S(\operatorname{fol}(\psi, i, \operatorname{len} i)) (\operatorname{forall} (j \operatorname{Int}) (\Rightarrow (\operatorname{and} (\leq (+ a k) j) (< j i)) S(\operatorname{fol}(\varphi_1, j, \operatorname{len} j)))))))$

Theories used: Uninterpreted functions and quantifiers

- Benchmarks:
 - 10,000 Random MLTL formulas: interval ranges in [0,100] (R);
 - 3 group of 63 NASA-Boeing MLTL formulas: interval ranges in [0, 1000], [0,10000] and [0, 100000] respectively (NB);
- Testing tools
 - Aalta-finite: LTL_f satisfiability checker;
 - Aalta-infinite: LTL satisfiability checker;
 - nuXmv (BMC and KLIVE): LTL Model Checker for the model-checking approach;
 - Z3: SMT solver for the SMT-based approach.
- Platform: NOTS cluster of Rice University;
- Time limit: 1 hour for each instance

• Evaluating encoding (R benchmarks)

LTLSAT and LTL_fSAT lines overlap; SMV and SMT lines overlap.

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

15 / 22

July 17, 2019

Evaluating encoding (R benchmarks)

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

July 17, 2019 16 / 22

• Evaluating solving (R benchmarks)

LTLSAT and LTL_fSAT lines overlap.

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

• Evaluating solving (R benchmarks)

1. Reduction to $LTLSAT/LTL_fSAT$ is not practical.

Jianwen Li et. al. (Iowa State) Satisfiability Checking for Mission-Time LTL

• Evaluating solving (R benchmarks)

2. KLIVE model checking performs best.

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

• Evaluating scalability (NB benchmarks)

BMC and KLIVE overlap.

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

July 17, 2019 20 / 22

• Evaluating scalability (NB benchmarks)

3. The SMT approach is the most scalable.

Jianwen Li et. al. (Iowa State)

Satisfiability Checking for Mission-Time LTL

- We prove MLTLSAT is NEXPTIME-complete;
- MLTLSAT via LTL_fSAT/LTLSAT is not practical at all;
- MLTLSAT via LTL model checking performs best when interval ranges are small;
- MLTLSAT via SMT has the most scalable performance;

