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Abstract. CubeSats are low-cost platforms that are popular for conducting space-
borne experiments, however they are known to have high failure rates („25% fail-
ure rate). In order to improve the likelihood of success of Iowa State University’s
first CubeSat (CySat-I), we integrate Runtime Verification (RV) on the CySat-I
to allow for fault detection at runtime. Although CubeSats have been previously
identified as a possible target for RV, this is the first time that a RV engine has
been deployed on a CubeSat. We utilize the R2U2 runtime verification engine
due to its low overhead; we embed R2U2 directly on the On-Board Computer
(OBC) to monitor the current state of the CySat-I. R2U2 continuously monitors
the different subsystems on the CySat-I, and R2U2’s fault detection triggers pre-
defined fault recovery strategies. Since the Electrical Power System (EPS) is a
common source of failure, we specifically focus on this subsystem. We design
a list of twenty-two specifications from English requirements corresponding to
the EPS and translate them into Mission-time Linear Temporal Logic (MLTL).
We perform mock launches on Earth with external fault injection to illustrate that
R2U2 successfully reasons about faults and the CySat-I effectively performs fault
recovery. We demonstrate that the CySat-I can successfully recover from eight
unique EPS faults at runtime in a timely manner with no errors. During our mock
launches, R2U2 discovered a potential error in the manufacturer’s firmware re-
lated to the EPS’s under-voltage event monitoring, and this led to a more in-depth
investigation of the error by the manufacturers.

Keywords: Online Runtime Verification · R2U2 · Temporal Logic · Formal Spec-
ification · Fault Recovery · CubeSat

1 Introduction
Since the first CubeSat was launched in 2003, the number of CubeSats launched each
year has increased exponentially, and as of December 2021, a total of 1,663 CubeSats
have been launched [12, 24, 27]. This exponential growth in CubeSats is due to their
low-cost and capability for fast development. CubeSats allow for both academic insti-
tutions and commercial sectors to gain easy space access with limited resources and
time requirements. With the increase in popularity of CubeSats, the technology and re-
search behind CubeSats has also advanced. This has lead to a decrease in failure rate
over the years, but the failure rate is still troubling at approximately 25% [27].

‹ Supported by NSF:CPS Award 2038903. Reproducibility artifacts available at http://
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Failure within CubeSats is common due to a lack of proper integration and sys-
tem testing before launching [14, 24, 25]. Furthermore, universities tend to have higher
failure rates than their commercial counterparts due to more constrained resources and
development schedules [13, 14, 24, 26]. If more time is dedicated to integration and
system testing, most causes of failure could be discovered before the satellite is ever
launched. Since fast development time is one of the attributes that make CubeSats at-
tractive, most CubeSats will never have fully exhaustive integration and system testing
before becoming spaceborne. Runtime Verification (RV) provides a unique mitigation.
RV adds an independent check for real-time triggering of appropriate fault recovery
strategies. Additionally, RV is a useful tool for finding errors in the system during test-
ing on Earth; it provides different coverage than traditional system testing to allow for
finding difficult errors with less effort.

Most CubeSat failures originate in the Electrical Power System (EPS), Attitude
Determination and Control System (ADCS), and the communications system [2,13,24].
These subsystems are mission-critical; if any of these subsystems fail, the entire satellite
experiences failure. A recent study formally verified a CubeSat’s ADCS at design time
to provide runtime assurance [8]. Also, [15] provides a case study of deploying runtime
verification on a simulated CubeSat communications system. We focus on the EPS as
it has never been evaluated for formal verification and it contributes to approximately
one-third of CubeSat failures [13].

The CySat-I’s Onboard Computer (OBC) has strict real-time constraints as it is re-
sponsible for commanding and monitoring all the other subsystems. The OBC is also re-
stricted to 2MB of program memory [6]. The Realizable, Responsive, Unobtrusive Unit
(R2U2) is a unique RV engine in that it requires little overhead and has a fast response
time [18, 21]. In addition, R2U2 has been previously deployed on several resource-
constrained hard real-time systems [3, 9, 10]. The CySat-I team selected R2U2 as the
RV engine due to its configurability for resource-constraints, real-time verdict stream-
ing, and proven unobtrusive monitoring of other real-time systems, e.g., [4,10,19]. Our
implementation of fault recovery with the aid of R2U2 is currently planned to launch
onboard the CySat-I in October 2022.

We contribute (1) elicitation of twenty-two realistic EPS specifications from English
requirements translated into Mission-time Linear Temporal Logic (MLTL), (2) external
fault injection to demonstrate that the CySat-I autonomously recovers from eight unique
EPS faults in real-time, and (3) firmware error discovery during testing with the help of
R2U2. Our categorization technique for the elicitation of EPS specifications is general-
izable for application to other mission-critical systems. The remainder of the paper is
organized as follows. Section 2 outlines the CySat-I architecture. Section 3 details the
implementation of R2U2 on the CySat-I. Section 4 describes the development of the
twenty-two specifications. Our mock launch setup with external fault injections appears
in Section 5. We analyze the mock launch results and plot data revealing a firmware er-
ror in Section 6. In Section 7, we draw conclusions and explore future plans.

2 System Description
The CySat-I is a 3U CubeSat (10cm x 10cm x 30cm) that was designed by students
at Iowa State University through the Aerospace Department’s Make to Innovate pro-
gram [17]. The CySat-I is composed of a mix of commercial off-the-shelf (COTS) and



Runtime Verification Triggers Fault Recovery on the CySat-I 3

custom components interconnected in a stack by PC/104 connectors as shown in Fig-
ure 1. The OBC, EPS, and UHF are COTS components from Endurosat. The OBC
hosts a STM32F427 ARM Cortex processor [6] serving as the brain of the satellite; it

Fig. 1. Exploded view of the CySat-I and all of
its components

is responsible for coordinating the other
subsystems. The EPS manages how the
solar panels charge the batteries and
manages when different power buses
and subsystems are powered on/off. The
Ultra-High Frequency Radio (UHF) is
responsible for deploying the antenna
and communicating with the ground sta-
tion. The ADCS, a COTS component
from CubeSpace, is responsible for ori-
entating the satellite towards Earth. The
boost board is a custom component that
amplifies the 5 volts produced by the EPS
to the 7.4 volts required by the ADCS.
The payload is another custom compo-
nent, and it consists of a FPGA that
hosts a Linux-based software defined ra-
dio (SDR). The payload’s SDR reads measurements from an array of low-noise ampli-
fiers (LNAs) to measure soil moisture on Earth [16].

3 Implementation

Fig. 2. R2U2 Integration. Specification binary files are loaded into R2U2 from a SD card. EPS
data is gathered and processed during ”Signal Processing”, and this outputs the signals (σ) that
are inputted into R2U2. Based on the loaded specifications, R2U2 supplies the output verdict (φ)
for each of the inputs (σ). The output verdicts (φ) are used by the OBC’s ”Fault Recovery” to
autonomously trigger the applicable EPS mitigation action. The power supply lines are indicated
by dashed lines.

We deploy R2U2 directly onto the OBC of the CySat-I using the STM32CubeIDE
[22]. The C version of R2U2 requires 16KB of the OBC’s 2MB program memory
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(0.8%), which leaves plenty of room for the CySat-I mission software (180KB). We
translated the CySat-I mission requirements from the Endurosat EPS user manual [5,7]
and the CySat-I concept of operations manual [11] into MLTL specifications. MLTL
concisely captures the strict temporal mission requirements and is a native language
of R2U2 [18, 21]. We compiled the specifications and loaded the specification binaries
onto the OBC’s SD card. The OBC loads the specifications once into R2U2 upon ini-
tial boot-up. FreeRTOS, a real-time operating system, manages the OBC’s tasks [1].
FreeRTOS launches a five second periodic task that will gather and process status infor-
mation from the EPS, input the signals into R2U2, and store the false output verdicts
produced by R2U2 into an array. The OBC evaluates this array, and whenever a false
output verdict occurs (i.e., a specification is violated), a predefined mitigation strategy
is triggered. Figure 2 illustrates this integration of R2U2 into the CySat-I.

4 Runtime Specification Development

We elicit specifications according to the categorization scheme presented in [20] and
used, e.g., in [3], including patterns for “operating range,” “rate of change,” “control
sequence,” and “physical model relationship” specifications. 1

Satellite power up. During the first thirty minutes after launch from the International
Space Station (ISS), it is strictly required by the ISS that a CubeSat can only have
its EPS and OBC subsystems powered on. Specification (1) captures this requirement.
Since the FreeRTOS task that runs R2U2 is launched every five seconds, the Gr0,360s

part of this specification covers the first thirty minutes of the mission (i.e., 5 seconds
* 360 = 30 minutes). During this time, all power buses (except for the 3.3 volt bus
required for the OBC) and all enable signals must be in the off/disabled state.

Gr0,360st␣5V Bus Enabled^␣LUP 5V Bus Enabled^

␣LUP 3.3V Bus Enabled^␣ADCS Active

^␣Payload Enabled^␣UHF Enabled^

␣Boost Board Enabledu (1)

Power bus requirement. Specification (2) captures that any time the UHF is enabled at
least thirty minutes after launch, then the latch-up protected (LUP) 3.3 volt bus must
also be enabled. The LUP 3.3 volt bus is a UHF input required for proper operation.
The Gr360,Ms part of the specification established that this specification must hold from
thirty minutes after launch till the end of the mission indicated by M . Corresponding
requirements for the boost board and payload form specifications (3) and (4).

Gr360,MstUHF EnabledÑ LUP 3.3V Bus Enabledu (2)

Gr360,MstBoost Booard EnabledÑ 5V Bus Enabledu (3)

Gr360,MstPayload EnabledÑ 5V Bus Enabledu (4)

1 All twenty-two specifications with categorization appear here: http:// temporallogic.org/
research/CySat-NFM22.
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Under-voltage event. Whenever the EPS’s output power buses fall below a given volt-
age threshold, the EPS’s lifetime under-voltage event counter increments [5]. Specifi-
cation (5) uses this information to compare the current value (value at mission time i)
of this status value to its previous value (value at mission time i ´ 1). If these are not
equal, then an under-voltage event has occurred. In this specification, Gr0,Ms checks
that the requirement holds from the beginning to the end of the mission.

Gr0,MstNum Under V oltagei ““ Num Under V oltagei´1u (5)

I2C communication. The OBC communicates with the EPS over an I2C bus interface.
It was documented in [2] that I2C communication errors can cause EPS failure. To
mitigate this mode of failure, we instrumented the OBC’s I2C driver to report and ac-
cumulate communication errors (e.g., NACKs, transaction timeouts). Specification (6)
detects whenever a new I2C error occurs. If the total number of I2C errors at the current
mission-time does not equal the total number of errors at the previous mission time,
then this specification does not hold. In the event that R2U2 detects the failure of this
specification, it triggers the fault mitigation action of resetting the I2C bus.

Gr0,MstNum I2C Errorsi ““ Num I2C Errorsi´1u (6)

5 Evaluation Methodology

Fig. 3. Mock Launch. Left: The physical CySat-I PC/104 stack without the external structures
(e.g., solar panels) and its setup during the mock launches. Right: Mock launch sequence.

We conduct mock launches to evaluate the correct implementation of our speci-
fications, deployment of R2U2 within the CySat-I, and implementation of our fault
recovery mechanisms. Within the CySat-I PC/104 stack, the EPS communicates with
the OBC via an I2C bus. The EPS also has a UART connection available over a USB
port. Endurosat provides a GUI that can interact with the EPS’s UART interface while
the EPS is plugged into the PC/104 stack. This setup is depicted in Figure 3. We lever-
age this GUI during mock launches to inject power bus faults by turning buses on/off
and subsystem enable faults by enabling/disabling different subsystems. As shown in
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Figure 3, a mock launch consists of: 1) powering on the EPS and OBC (i.e., emulating
the CySat-I being launched from the ISS), 2) FreeRTOS on the OBC starting the R2U2
task that runs every five seconds, 3) FreeRTOS starting simplified tasks for the other
subsystems, and 4) all subsystem tasks waiting thirty minutes before starting modified
operation. We record and analyze the input status signals of R2U2 and the output ver-
dicts generated by R2U2 during the mock launch fault-injection campaigns. These logs
allow us to determine if faults are being detected as expected and if fault mitigation
strategies are being appropriately triggered.

6 Results and Analysis

Fig. 4. EPS Fault Recovery. (a) The power status of the 5 volt, LUP 5 volt, and LUP 3.3 volt buses.
(b) The enable status of the ADCS, payload, UHF, and boost board. An ’X’ marker indicates an
injection of an external fault. (c) (d) (e) (f) Output from R2U2 correctly determining the current
state of specification (1), (2), (3), and (4) respectively. A shaded region indicates a time range
where the OBC does not care about the output of R2U2 within its fault recovery.

R2U2 is a stream-based RV engine that reevaluates specifications at each time step
creating an implicit global operator. Therefore, we reduce our specifications that we
instruct R2U2 to reason over as depicted in Figure 4 and 5. Recall that specification (1)
is only applicable for the first thirty minutes after launch, specifications (2), (3), and
(4) are only applicable after the first thirty minutes, and specifications (5) and (6) are
always applicable. In order to apply a specification for a certain time interval, the OBC
monitors the current time step of R2U2. If not within the applicable time interval for
a specification, the OBC does not care what R2U2 is outputting and does not apply a
mitigation action, which is indicated by the shaded region in Figure 4.

Figure 4 illustrates an approximately hour-long mock launch with fault recovery
for four unique specification faults (i.e., specification (1), (2), (3), and (4)).2 Within the
first thirty minutes, none of the plotted power buses or subsystem enables are allowed

2 All eight specification faults appear here: http:// temporallogic.org/research/CySat-NFM22.

http://temporallogic.org/research/CySat-NFM22
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to be enabled. During this period, we inject power bus and subsystem enable faults.
Each time a fault is injected, two actions are observed: 1) R2U2 indicates a fault by
providing a false verdict for specification (1), and 2) our fault recovery mechanism
is triggered shown by the violating enable being disabled autonomously by the next
time step. After the initial thirty minutes, we inject faults that either enable a subsystem
before its required power bus is powered on or we disable a power bus while its cor-
responding subsystem is still enabled. In both cases, a mitigation strategy enabled the
appropriate power bus by the next time step. While the time steps observed by R2U2
are five seconds, the response time of our fault recovery (i.e., time from fault detection
to correction) is approximately 7 ms.

Figure 5 depicts the discovery of an error within the EPS firmware, which provides
a real-world example of the benefit of using RV during testing. During a mock launch,
R2U2 detected the number of under-voltage events changing. Upon closer examination,
the value spikes from a value of ten (the expected value during this mock launch) to a
value of 2308 briefly before returning back to a value of ten. After discovering this
erroneous behavior with the EPS’s firmware, we contacted the manufacturer who is
currently investigating the issue.

Fig. 5. Potential EPS Firmware Error. (a) The value of the under-voltage event counter. (b) Output
from R2U2 correctly determining the current state of specification (5) to indicate a change in the
under-voltage event counter.

7 Conclusion

In order to increase the CySat-I’s chance for having a successful mission, we deployed
R2U2 on the CySat-I to trigger fault recovery and monitor for errors during testing.
R2U2 was able to successfully reason over twenty-two MLTL specifications and detect
faults in real-time. R2U2 and our fault recovery mechanisms will ensure that several
faults that could occur during the CySat-I’s mission can be successfully recovered from.
Additionally, if R2U2 had not been deployed on the CySat-I, we would have never un-
covered the EPS firmware bug concerning the under-voltage event counter. The ability
to perform fault recovery in real-time during the mission of the CySat-I is advantageous
for the other mission-critical subsystems onboard (e.g., the ADCS and UHF); appropri-
ate fault recovery for these subsystems can reduce the failure rate of future CubeSats.
In future work, the R2U2 engine can trigger appropriate fault mitigation strategies for
all mission-critical subsystems of a CubeSat, and RV can continue to be explored for
CubeSat testing on Earth to assist in discovering elusive errors. We are also pursuing to
publish our twenty-two EPS specifications as a benchmark to a public database (e.g.,
StarExec [23]).
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