
Symbolic Model-Checking Intermediate-Language Tool
Suite ⋆

Chris Johannsen1, Karthik Nukala2, Rohit Dureja3, Ahmed Irfan2, Natarajan
Shankar2, Cesare Tinelli4, Moshe Y. Vardi5, Kristin Yvonne Rozier1

1 Iowa State University {cgjohann, kyrozier}@iastate.edu
2 SRI International {karthik.nukala, ahmed.irfan, natarajan.shankar}@sri.com

3 Advanced Micro Devices, Inc. (rohit.dureja@amd.com)
4 The University of Iowa (cesare-tinelli@uiowa.edu)

5 Rice University (vardi@cs.rice.edu)

Abstract. We release the first tool suite implementing MOXI (Model eXchange
Interlingua), an intermediate language for symbolic model checking designed to
be an international research-community standard and developed by a widespread
collaboration under a National Science Foundation CISE Community Research
Infrastructure initiative. Although we focus here on hardware verification, the
MOXI language is useful for software model checking and verification of infinite-
state systems in general. MOXI builds on elements of SMT-LIB 2; it is easy to
add new theories and operators. Our contributions include: (1) introducing the
first tool suite of automated translators into and out of the new model-checking
intermediate language; (2) composing an initial example benchmark set enabling
the model-checking research community to build future translations; (3) compil-
ing details for utilizing, extending, and improving upon our tool suite, includ-
ing usage characteristics and initial performance data. Experimental evaluations
demonstrate that compiling SMV-language models through MOXI to perform
symbolic model checking with the tools from the last Hardware Model Checking
Competition performs competitively with model checking directly via NUXMV.

1 Overview
As model checking becomes more integrated into the standard design and verification
process for safety-critical systems, the platforms for model-checking research have be-
come more limited (e.g., for the SMV language, CadenceSMV[42] and NuSMV[21] are
both deprecated; only closed source NUXMV [12] remains). Continuing advances in the
field requires the ability to utilize higher-level languages that offers sufficient expres-
sive power to describe modern, complex systems, and enable validation by industrial
system designers. At the same time, contributing advances to back-end model-checking
algorithms requires the ability to compare across the full range of the state-of-the-art
algorithms, without regard for which open- or closed-source model checkers implement
them, or what input languages those tools accept. Currently, comparing new advances in
model-checking algorithms to the state of the art requires re-implementing entire model
checkers, e.g., [27]. We need a sustainable tool flow that can model the system in the
most domain-appropriate high-level modeling language, analyze it with the full range of
state-of-the-art model-checking algorithms, and return counterexamples or certificates
in the original modeling language.
⋆ This work was funded by NSF:CCRI Award #2016592, #2016597, #2016656.

Our tool suite represents an initial step at unifying model-checking research plat-
forms. We seed an extensible framework designed around a model-checking intermedi-
ate language, MOXI (Model eXchange Interlingua). MOXI aims to serve as a common
language for the international research community that can connect popular front-end
modeling languages with the state of the art in back-end model-checking algorithms.
Our vision is that MOXI will enable researchers to model check a new or extended
modeling language simply by writing translators to and from MOXI. Similarly, devel-
oping a new back-end model-checking algorithm will only require writing a translator
to and from MOXI to enable comparisons with existing algorithms, and evaluations on
every available benchmark model, regardless of its original modeling language.

Our initial tool suite accepts models in the higher-level language SMV, and effi-
ciently interfaces with the back-end model checkers that competed in the last Hardware
Model Checking Competition (HWMCC) [10]. We choose SMV because it is a popular,
expressive modeling language, successfully used in a wide range of industrial verifica-
tion efforts [49,32,57,20,44,43,59,14,29,38,11,60,61,41,30,26,27]. SMV is important
because, uniquely from other model-checking input languages, it includes high-level
constructs critically required for modeling and validating safety-critical systems, such
as many aerospace operational systems from Boeing’s Wheel Braking System [11] to
NASA’s Automated Airspace Concept [60,61,41,30] to a variety of Unmanned Aerial
Systems [54,50]. SMV has been used extensively by the hardware model-checking
community as well (e.g., at FMCAD [34]) and has appealing qualities that could fur-
ther the integration of formal methods with the embedded-systems community. Two
freely-available model checkers, CadenceSMV [42] and NUSMV [21] (which is inte-
grated into today’s NUXMV [47]), previously provided viable research platforms. Yet,
today CadenceSMV’s 32-bit pre-compiled binary and NUXMV’s increasingly restricted,
closed-source releases are no longer suitable for research, e.g., into improved model-
checking algorithms. We provide accessibility to continue the progression of high-level
language model checking in SMV via an open-source research platform that allows the
use of new algorithms under the hood.

Pushing the state of the art are several open-source, award-winning, model-checking
tools, including AVR [31], Pono [40], BTORMC [46], and ABC [15], These tools are
based on a hardware-oriented bit-level input language like AIGER, or a bit-precise,
word-level format like BTOR2. Unfortunately, such languages do not support direct
modeling of modern complex systems the way SMV does. This hinders validation as it
is very hard, for instance, to convince industrial system designers that AIGER models
correctly capture their higher-level systems. Perhaps driven by HWMCC, most systems
for translating from high-level models to AIGER currently focus on hardware designs,
without providing a natural way to describe other computational systems, e.g., embed-
ded systems. Also, the problem of translating counterexamples produced by low-level
model-checking algorithms back into meaningful counterexamples for a non-hardware-
centric higher-level language model, such as one in SMV, remains a challenge.

Section 2 provides a basic introduction to MOXI, sufficient to enable understanding
of the tool suite functionality; a description of the full language and its semantics ap-
pears in [53,52]. Section 3 details the extensible research and verification suite of tools,
including translators between the languages SMV, MOXI (in concrete and JSON di-

2

alects), and BTOR2; utilities for validation; and a full model-checking implementation.
Here we provide a detailed example of behaviorally equivalent models in SMV, MOXI,
and BTOR2. Our efforts to validate their correctness appear in Section 4. Section 5
demonstrates the efficiency of model checking SMV-language models with a tool port-
folio via translation through MOXI, which performs better than checking with NUXMV
alone. All of the benchmarks used in this experiment are available online6 for others to
utilize in building additional translators to extend our tool suite and the use of MOXI
as an intermediate language for symbolic model checking. Section 6 concludes with a
discussion of future work.

2 Intermediate Language

MOXI (detailed in [52]), is an intermediate language designed to serve as a com-
mon input and output standard for model checkers for finite- and infinite-state sys-
tems. It is general enough to encode high-level modeling languages like SMV yet sim-
ple enough to enable efficient model checking, including through low-level languages
such as BTOR2 or SAT/SMT-based engines. Key features include: a simple and eas-
ily parsable syntax; a rich set of data types; minimal syntactic sugar (at least initially);
well-understood formal semantics; a small but comprehensive set of commands.

Since MOXI maximizes machine-readability, it does not support all human-interface
features found in high-level languages such as SMV, TLA+ [39], PROMELA [33],
Simulink [24], SCADE [25], and Lustre [16]; nor does it directly support the full fea-
tures of hardware modeling languages such as VHDL [36], or Verilog [35]. However,
models and queries expressed in these languages can be reduced to MOXI represen-
tations. MOXI development was directly informed by previous intermediate formats
for formal verification, their successful applications, and their limitations. The eventual
form of MOXI stems from a combination of previous work and direct conversations
with model checking and SMT researchers, including the developers of BTOR2 [46],
SMV [18,17], NUXMV [13,17], AIGER [1,2,3], SAL/SALLY [45,8], VMT-FBK [23,37],
Kind 2 [19], and SMT-LIB (the standard I/O language for SMT solvers) [56,6,5]. MOXI
also benefited from the feedback from a technical advisor board made of prominent re-
searchers and practitioners in academia and industry [53].

The base logic of MOXI is the same as that of SMT-LIB Version 2: many-sorted
first-order logic with equality, quantifiers, let binders and algebraic datatypes. MOXI
extends this logic to (first-order) temporal logic while adopting a discrete and linear
notion of time, with standard finite and infinite trace-based semantics. MOXI also ex-
tends the SMT-LIB language with new commands for defining and verifying multi-
component reactive systems. For the latter, it focuses on the specification and checking
of reachability conditions (or, indirectly, state and transition invariants) and deadlocks,
possibly under fairness conditions on system inputs. Each system definition command
defines a transition system via the specification of an initial state condition, a transi-
tion relation and system invariants. These are provided as SMT formulas, with minimal
syntactic restrictions on them, for flexibility and future extensibility. Each defined sys-
tem is parameterized by a state signature, provided as a sequence of typed variables,

6 modelchecker.github.io/benchmarks

3

modelchecker.github.io/benchmarks

and can be expressed as the synchronous composition of other systems.7 The signature
partitions state variables into input, output and local variables. Each system verification
command expresses one or more reachability queries over a previously defined system.
The queries can be conditional on environmental assumptions on the system’s inputs
and fairness conditions on its executions. Together with the ability to write observer
systems, this allows the expression of arbitrary LTL specifications via standard encod-
ings [51]. Responses to a system verification command can contain (finite or lasso)
witness traces for reachable properties, or proof certificates for unreachable ones.

Figure 1 contains an example (adapted from [4]) of a three-bit counter and its mod-
ular definition in MOXI, together with a reachability query and a sample response to
the query. Figure 2 contains an extension of that model with an observer system and
a query for checking the observational equivalence of the three-bit counter with a bit-
vector counter of matching width. The various components of each system definition or
check command are provided as attribute-value pairs, following the syntax of SMT-LIB
annotations. Transition predicates use primed variables to denote next-state values.

3 Tools
We provide a suite of tools for translating into and out of and validating MOXI scripts
implemented in type-annotated Python and focusing on finite-state systems for now.
Figure 3 illustrates the end-to-end toolchain, with relationships between the tools.

3.1 Translators

The tool suite contains four translators that take a model/query/witness as input and
output a behaviorally equivalent model/query/witness in the target language.

smv2moxi translates specifications written in (a common subset of) the SMV-language
into MOXI. Broadly, this tool supports Finite State Machine (FSM) definitions (NUXMV
manual, Section 2.3 [13]). It currently supports only statically-typed expressions; for
example, all module instantiations of the same defined module must share the same
signature. (For a module M with parameters p1 and p2, the types of p1, p2 must be
the same across all instantiations of M.) As Figure 4 shows, the translation preserves the
hierarchy between the SMV modules and submodule instantiations.

The MOXI encoding directly captures SMV variable declarations (VAR, IVAR,
FROZENVAR), constants CONSTANT, macro and function declarations (DEFINE, FUN),
state machine component declarations (INIT, TRANS, INVAR, ASSIGN), fairness
constraints (FAIRNESS, JUSTICE, COMPASSION), and invariant specifications (AG
[property], INVARSPEC). To support LTL specifications (LTLSPEC), smv2moxi runs
PANDA [51], an open-source tool offering a portfolio of LTL-to-symbolic automaton
translations in SMV format.

The smv2moxi tool consists of (1) preprocessing that renames identifiers deviat-
ing from the SMV grammar; (2) running the C preprocessor (SMV supports C-style
macros) and PANDA [51] (for LTL specifications); (3) parsing via a SLY-generated [7]
parser; (4) running a SMV type checker; (5) translating to MOXI. We emphasize that
tool guarantees apply to well-formed SMV models as determined by NUXMV.

7 We plan to include asynchronous composition in a later release.

4

1 (define-system Latch :input ((set Bool) (reset Bool))
2 :output ((out Bool))
3 :init (not out)
4 :trans ((= out’ (or (and set (not reset))
5 (and (not reset) out))))
6)
7 (define-system OneBitCounter :input ((inc Bool))
8 :output ((out Bool) (carry Bool)) :local ((set Bool))
9 :subsys (L (Latch set carry out))

10 :inv (and (= set (and inc (not carry)))
11 (= carry (and inc out)))
12)
13 (define-system ThreeBitCounter :input ((inc Bool))
14 :output ((out0 Bool) (out1 Bool) (out2 Bool))
15 :local ((car0 Bool) (car1 Bool) (car2 Bool))
16 :init (and (not out0) (not out1) (not out2))
17 :subsys (C1 (OneBitCounter inc out0 car0))
18 :subsys (C2 (OneBitCounter car0 out1 car1))
19 :subsys (C3 (OneBitCounter car1 out2 car2))
20)
21 (check-system ThreeBitCounter :input ((inc Bool))
22 :output ((out0 Bool) (out1 Bool) (out2 Bool))
23 :local ((car0 Bool) (car1 Bool) (car2 Bool))
24 :reachable (r (and (not out0) out1 (not out2)))
25 :query (query1 (r))
26)

1 (check-system-response ThreeBitCounter
2 :query (query1 :result sat :trace query1_trace)
3 :trace (query1_trace :prefix query1_trail)
4 :trail (query1_trail
5 (0 (out0 0) (out1 0) (out2 0) (inc 1) (car0 0) (car1 0) (car2 0))
6 (1 (out0 1) (out1 0) (out2 0) (inc 1) (car0 1) (car1 0) (car2 0))
7 (2 (out0 0) (out1 1) (out2 0) (inc 1) (car0 0) (car1 0) (car2 0))
8))

Fig. 1: (Top) The three-bit counter circuit composes three one-bit counters together,
where each one-bit counter uses a latch to store that counter’s current value. (Middle)
A MOXI implementation of the circuit uses define-system commands (lines 1-20)
to describe and compose each component of the counter. It then queries (lines 21-26)
whether the counter can output 2. (Bottom) A possible query response provides a trace
showing that the counter outputs 2 within 3 execution steps. We write Bool values as
integers here for compactness.

5

27 (set-logic QF_BV)
28 (define-system BitVecCounter :input ((inc Bool))
29 :output ((out (_ BitVec 3)))
30 :init (= out #b000)
31 :trans (= out’ (ite inc (bvadd out #b001) out))
32)
33 (define-system Monitor
34 :local ((inc Bool) (out_bit (_ BitVec 3)) (out_bv (_ BitVec 3))
35 (bit0 Bool) (bit1 Bool) (bit2 Bool))
36 :subsys (C1 (ThreeBitCounter inc bit0 bit1 bit2))
37 :subsys (C2 (BitVecCounter inc out_bv))
38 :inv (= out_bit (to_bv3 bit0 bit1 bit2))
39)
40 (check-system Monitor
41 :local ((inc Bool) (out_bit (_ BitVec 3)) (out_bv (_ BitVec 3))
42 (bit0 Bool) (bit1 Bool) (bit2 Bool))
43 :reachable (reach1 (distinct out_bit out_bv))
44 :query (query1 (reach1))
45)

1 (check-system-response Monitor
2 :query (query1 :result unsat)
3)

Fig. 2: (Top) Extending the MOXI model shown in Figure 1, a Monitor (lines 33-40)
computes the output for a ThreeBitCounter and a bit-vector-based counter (lines 28-
32). Function to_bv3 (whose definition is omitted for space constraints) converts the
returned 3 bits to the corresponding bit-vector value. The check-system command
(lines 40-45) queries whether it is possible that their outputs differ. (Bottom) The re-
sulting check-system-response shows that the reachability query is unsatisfiable,
proving the two counters equivalent.

Fig. 3: Starting with a NUXMV model, smv2moxi generates a behaviorally equiv-
alent MOXI model in either the MOXI concrete syntax or a JSON dialect syntax.
moxi2btor translates this MOXI model to a set of BTOR2 models, one for each query,
which an off-the-shelf model checker (e.g., AVR [31], PONO [40], BTORMC [46])
solves. Then, btorwit2moxiwit creates a MOXI witness from the BTOR2 wit-
ness using the BTOR2 model to map variable names properly, and similarly for
moxiwit2smvwit. The sort checker validates MOXI input against any of the SMT-
LIB logics listed in Section 3.2. The validator checks JSON dialect input against our
provided schema.

6

moxi2btor translates MOXI to BTOR2 by creating a BTOR2 file for each :query
attribute in each check-system command.

There are some important differences between MOXI and BTOR2 that present non-
trivial challenges. Firstly, BTOR2 does not support hierarchical models. moxi2btor
flattens the system hierarchy in its translation as a result. Secondly, MOXI allows for
declarative-style initial, transition, and invariant conditions while BTOR2 allows only
assignment-style. Figure 4 shows how moxi2btor encodes each system’s conditions
using three variants of each variable. Thirdly, an MOXI query with multiple reach-
ability properties asks for a trace that eventually satisfies each property. In BTOR2,
multiple bad properties in a file ask for a trace that eventually satisfies at least one
such property. Figure 4 again shows how the translation resolves this difference. The
moxi2btor tool’s workflow consists of (1) parsing via a SLY-generated parser [7];
(2) running sortcheck (Section 3.2); (3) translating to a set of BTOR2 files, each
behaviorally equivalent to its corresponding :query.

btorwit2moxiwit translates BTOR2 witnesses to check-system-responses
of MOXI. It assumes moxi2btor created the BTOR2 input files used to generate the
witness and uses information that moxi2btor encodes in comments of each BTOR2
file. For example, to map bit vectors to enumeration values for variables of such sorts.

moxiwit2smvwit translates MOXI responses to SMV-language response output.

3.2 Utilities

sortcheck We provide a reference sort-checker for MOXI that supports the follow-
ing SMT-LIB logics: QF_BV, QF_ABV, QF_LIA, QF_NIA, QF_LRA, and QF_NRA.

validate We define a JSON Schema for MOXI and support a JSON dialect for
MOXI in our tools. Given the evolving nature of new languages and their standards,
tool writers often pay an unnecessary overhead in keeping front-end tools up to date.
By supporting the representation of MOXI constructs in the JSON dialect, we expect
to facilitate tool development, improve tool interoperability, and ensure conformance
to the language standard. Tool writers can use widely available JSON parsers (e.g.,
simdjson, RapidJSON), to obtain industrial-strength MOXI parsers in the language of
their choice “for free.” We plan to accompany each MOXI release with a correspond-
ing JSON Schema, enabling seamless front-end compatibility with the latest MOXI
standard along with language/platform independence.

We provide a tool, validate, that invokes an off-the-shelf JSON validator from
Python’s jsonschema package to validate an MOXI file (in the JSON dialect) against
the official MOXI JSON Schema.

4 Tool Suite Validation
We validate our tools using a combination of manual inspection, sort checking of trans-
lated output, and comparison of witnesses between those generated by NUXMV and our
end-to-end tool suite. We use CATBTOR [46] for sort checking and BTORMC, AVR,
and PONO for bounded model checking (BMC) of BTOR2 files. For benchmark gen-
eration, we use the set of NUXMV input files provided in the most recent release of
NUXMV.

7

SMV

MODULE Delay(i,o)
INIT
(o = 0ud8_0);

TRANS
(next(o) = i);

MODULE main
IVAR
i: unsigned

word[8];
VAR
o: unsigned

word[8];
D: Delay(i,o);

INVARSPEC
! (o = 0ud8_2);

MOXI
(set-logic QF_BV)
(define-system Delay

:input ((i (_ BitVec 8))
(o (_ BitVec 8)))

:init (= o #x00)
:trans (= o’ i)

)
(define-system main

:input ((i (_ BitVec 8)))
:output ((o (_ BitVec 8)))
:local ((D.i (_ BitVec 8))

(D.o (_ BitVec 8)))
:inv (and

(= D.i i) (= D.o o))
:subsys

(D (Delay D.i D.o))
)
(check-system main

:input ((i (_ BitVec 8)))
:output ((o (_ BitVec 8)))
:local ((D.i (_ BitVec 8))

(D.o (_ BitVec 8)))
:reachable (rch

(not (not (= o #x02))))
:query (qry_rch (rch))

)

BTOR2
1 sort bitvec 8
2 sort bitvec 1
3 state 1 D.o.init
4 state 1 D.o.cur
5 state 1 D.o.next
6 state 1 D.i.cur
7 state 1 o.cur
8 state 1 i.cur
9 init 1 4 3
10 next 1 4 5
11 constd 1 0
12 eq 2 3 11
13 constraint 12
14 eq 2 5 6
15 constraint 14
16 constd 2 1
17 constraint 16
18 eq 2 4 7
19 eq 2 6 8
20 and 2 19 18
21 constraint 20
22 constd 2 0
23 constd 1 2
24 eq 2 7 23
25 not 2 24
26 not 2 25

27 state 2 F_rch
28 init 2 27 22
29 ite 2 27 16 26
30 next 2 27 29
31 bad 27

Fig. 4: For a simple delay circuit, the toolchain translates the SMV model on the left
to the MOXI model in the center by creating a define-system command for each
MODULE. It then generates the BTOR2 model on the right, introducing three variants of
each check-system variable (.init, .cur, .next) and setting constraints such as
the :init and :next of Delay on lines 13 and 15 respectively. The BTOR2 “flag”
variable F_rch (line 27) encodes if formula rch has been true at least once during the
execution; the presence of multiple BTOR2 bad properties asks for a trace where at
least one such property is eventually true, we conjunct the flag variables to ask for a
trace where every property is eventually true.

SMV
Trace Description:

nuxmv2btor
counterexample

Trace Type:
Counterexample
-> State: 1.1 <-
D.i = 0ud8_2
D.o = 0ud8_0
o = 0ud8_0

-> Input: 1.2 <-
i = 0ud8_0

-> State: 1.2 <-
D.i = 0ud8_0
D.o = 0ud8_2
o = 0ud8_2

MOXI
(check-system-response main
:query (qry_rch

:result sat
:trace qry_rch_trace

)
:trace (qry_rch_trace

:prefix qry_rch_trail
)
:trail (qry_rch_trail

(0 (D.i #b00000010)
(D.o #b00000000)
(o #b00000000)
(i #b00000010))

(1 (D.i #b00000000)
(D.o #b00000010)
(o #b00000010)
(i #b00000000))

))

BTOR2
sat b0 #0
0 00000000 D.o.init
1 00000000 D.o.cur
2 00000010 D.o.next
3 00000010 D.i.cur
4 00000000 o.cur
5 00000010 i.cur
6 0 F_rch
#1
1 00000010 D.o.cur
2 00000000 D.o.next
3 00000000 D.i.cur
4 00000010 o.cur
5 00000000 i.cur
#2
1 00000000 D.o.cur
4 00000000 o.cur
6 1 F_rch

Fig. 5: The witness translation after model checking the BTOR2 file in Figure 4 works
right to left: it maps each BTOR2 .cur variable to its MOXI counterpart and discards
the last frame of the witness due to the delay caused by using flag variables. Similarly,
it maps each MOXI variable to its SMV counterpart.

8

Manual Inspection We provide an initial set of hand-written MOXI bechmarks to per-
form manual validation. Each benchmark is well-sorted according to sortcheck,
generates well-sorted BTOR2 via moxi2btor according CATBTOR, and generates cor-
rect, manually-inspected witnesses via BTORMC and btorwit2moxiwit.8

Sort Checked Translations Using the benchmarks distributed with NUXMV as input,
we check that the output of smv2moxi and moxi2btor are well-sorted according
to sortcheck and CATBTOR. We discovered numerous discrepancies in benchmarks
distributed with NUXMV while developing these utilities, where the benchmarks did
not conform to the grammar defined in Chapter 2 of the NUXMV User Manual [13]
but were accepted by NUXMV nonetheless, particularly with regard to identifiers. The
preprocessor of smv2moxi transforms these identifiers into valid ones. There were
also numerous ill-typed benchmarks that smv2moxi’s type checker correctly rejects.

Output Comparison Using again the NUXMV benchmarks as input, we run NUXMV
and our tool suite to generate witnesses for each specification. Both NUXMV and our
tool suite agree on the result of every model checking query. Figure 6 shows that our
tool chain (using BTORMC, AVR, or PONO as its back end) returns results in time
competitive with NUXMV when the latter is set to use BMC or k-induction.

5 Benchmarks
We provide an initial set of MOXI benchmarks for the model-checking community,
generated from the set of SMV input files provided in the most recent release of NUXMV.
Noting that many of the SMV benchmarks are results of a BTOR2 to NUXMV transla-
tion themselves, we stress that this set of benchmarks is intended to be an initial set. We
expect to achieve greater benchmark diversity with continued toolchain development
and other researchers adopting MOXI as an intermediate language.

Experimental Evaluation We compare the end-to-end performance of model-checking
SMV-language models with a portfolio comprising NUXMV and BTOR2 model check-
ers: AVR, PONO and BTORMC, on a set of 960 QF_ABV-compatible SMV bench-
marks, i.e., SMV models that contain only boolean/word/array types. We use the HWMCC
2020 versions of AVR and PONO, the version of BTORMC from the latest version of
Boolector [46], and the latest public release of NUXMV (version 2.0.0). Each checker
is configured with a 1-hour time limit and 8GB memory limit and runs BMC [9] and
k-induction [55] with a max bound of 1000. (We do not run BTORMC with k-induction
due to a bug in its implementation.)

Figure 6 shows our evaluation, with portfolio performance depicted as virtual-best
(vb). While we consider this a proof-of-concept evaluation, we observe that SMV-
language model checking using BTOR2 model checkers, enabled via a translation through
MOXI, delivers superior performance on unsafe queries compared to model checking
with NUXMV alone; vb-bmc solves 57% more benchmarks compared to NUXMV-bmc
while ensuring all BTOR2 witnesses are correctly translated to SMV traces. For safe
queries, we measure competitive performance with vb-kind solving 6% more bench-
marks compared to NUXMV-kind. The vb performance gains are due to its ability to use

8 Many thanks to Daniel Larraz for writing many of the MOXI examples.

9

0

200

400
#

SA
T

So
lv

ed

vb-bmc
AVR-bmc

BTORMC-bmc
NUXMV-bmc

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

50

100

Wall-clock Time (s)

#
U

N
SA

T
So

lv
ed

vb-kind
AVR-kind

BTORMC-kind
NUXMV-kind

Fig. 6: Performance comparison on unsafe and safe queries with BMC and k-induction,
respectively, across different model checkers. vb-* represents the virtual-best solver.
Wall-clock time for the non-NUXMV plots include translation time.
a variety of model checkers with different SMT solver backends of varying strengths,
e.g., NUXMV uses MathSAT [22], AVR uses Yices [28], and PONO uses Boolector [46],
while ensuring correct model and witness translation through MOXI.

6 Conclusion and Future Work
The presented tool suite provides the foundational step in developing an open-source,
state-of-the-art symbolic model-checking framework for the research community. It
constitutes the first tool support for the new intermediate language MOXI, the first
experimental evidence of the potential for efficient translation through MOXI, and a
basis upon which the hardware and software model-checking communities can build.
Adding support for checking models in a high-level modeling language is now as easy
as adding to this tool suite a translator between that language and MOXI. Similarly,
experimenting with a novel back-end model-checking algorithm to check all supported
input modeling languages only requires writing a new MOXI translator interfacing that
algorithm. Benchmarking against other model-checking algorithms no longer requires
re-implementing existing tools in order to achieve an apples-to-apples comparison.

This release enables future instantiations of HWMCC [10] to center around MOXI,
with extensions from the model-checking research community. Specifying, proving cor-
rect, and extracting efficient, C code for our translation using a theorem prover such as
PVS [48] would provide an additional trusted translation between languages, beyond
the validation techniques in Section 4. Writing a back end to Yosys [58], the open-
source RTL synthesis framework, to generate files directly from Verilog designs would
facilitate creating a larger set of realistic benchmarks to add to the initial set in Section
5. These benchmarks would be good candidates for use in a future HWMCC. Finally,
we expect that developers of model checkers for higher-level modeling languages than
a language like BTOR2 may choose to support MOXI directly. We have work in this
direction under way for the Kind 2 checker.

10

References

1. The AIGER and-inverter graph (AIG) format version 20071012. http://fmv.jku.at/
aiger/FORMAT, accessed: 2016-07-25

2. AIGER 1.9 and beyond. http://fmv.jku.at/hwmcc11/beyond1.pdf, accessed:
2016-07-25

3. AIGER website. http://fmv.jku.at/aiger/, accessed: 2016-07-25
4. Alur, R.: Principles of cyber-physical systems. MIT press (2015)
5. Barrett, C., Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competi-

tion. In: Proc. 17th Int’l Conf. on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 3576, pp. 20–23. Springer (2005)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroen-
ing, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theo-
ries (Edinburgh, UK) (2010)

7. Beazley, D.: Sly (sly lex yacc). https://sly.readthedocs.io/en/latest/
(2018)

8. Bensalem, S., Ganesh, V., Lakhnech, Y., noz, C.M., Owre, S., Rueß, H., Rushby, J., Rusu,
V., Saïdi, H., Shankar, N., Singerman, E., Tiwari, A.: An overview of SAL. In: Holloway,
C.M. (ed.) LFM 2000: Fifth NASA Langley Formal Methods Workshop. pp. 187–196.
NASA Langley Research Center, Hampton, VA (Jun 2000), http://www.csl.sri.
com/papers/lfm2000/

9. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking Without BDDs. In:
Proceedings of the 5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems. pp. 193–207. TACAS, Springer-Verlag, Berlin, Heidelberg (1999),
http://dl.acm.org/citation.cfm?id=646483.691738

10. Biere, A., Froleyks, N., Preiner, M.: Hardware Model Checking Competition (HWMCC).
https://fmv.jku.at/hwmcc20/index.html (2020)

11. Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., Robin-
son, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel brake system. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV. pp. 518–535. Springer (2015)

12. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: nuXmv 1.0 User Manual. Tech. rep., FBK - Via Som-
marive 18, 38055 Povo (Trento) – Italy (2014)

13. Bozzano, M., Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: nuxmv 2.0. 0 user manual. Fondazione Bruno Kessler,
Tech. Rept., Trento, Italy (2019)

14. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The COMPASS
approach: Correctness, Modelling, and Performability of Aerospace Systems. In: Computer
Safety, Reliability, and Security, pp. 173–186. Springer (2009)

15. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In:
International Conference on Computer Aided Verification. pp. 24–40. Springer (2010)

16. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: Lustre: A declarative language for program-
ming synchronous systems. In: Proc. 14tj Annual ACM Symposium on Principles of Pro-
gramming Languages. pp. 178–188 (1987)

17. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The NUXMV symbolic model checker. In: Biere, A., Bloem, R. (eds.)
Proc. 26th Int. Conf. on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 8559, pp. 334–342. Springer (2014)

18. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M., Roveri, M.,
Tchaltsev, A.: Nusmv 2.6 user manual (2016)

11

http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/
https://sly.readthedocs.io/en/latest/
http://www.csl.sri.com/papers/lfm2000/
http://www.csl.sri.com/papers/lfm2000/
http://dl.acm.org/citation.cfm?id=646483.691738
https://fmv.jku.at/hwmcc20/index.html

19. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker. In:
Proc. 28th Int’l Conf. on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 9780, pp. 510–517. Springer (2016)

20. Choi, Y., Heimdahl, M.: Model checking software requirement specifications using domain
reduction abstraction. In: IEEE ASE. pp. 314–317 (2003)

21. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: CAV,
Proc. 14th Int’l Conf. pp. 359–364. LNCS 2404, Springer (2002)

22. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In:
TACAS. pp. 93–107 (2013)

23. Cimatti, A., Griggio, A., Tonetta, S., et al.: The vmt-lib language and tools. In: Proceed-
ings of the 20th Internal Workshop on Satisfiability ModuloTheories co-located with the
11th International Joint Conference onAutomated Reasoning {(IJCAR} 2022) part of the
8th Federated LogicConference (FLoC 2022), Haifa, Israel, August 11-12, 2022. vol. 3185,
pp. 80–89. CEUR-WS. org (2022)

24. Documentation, S.: Simulation and model-based design (2020), https://www.
mathworks.com/products/simulink.html

25. Documentation, SCADE: Ansys SCADE Suite (2023), https://www.ansys.com/
products/embedded-software/ansys-scade-suite

26. Dureja, R., Rozier, E.W.D., Rozier, K.Y.: A case study in safety, security, and
availability of wireless-enabled aircraft communication networks. In: Proceedings
of te 17th AIAA Aviation Technology, Integration, and Operations Conference
(AVIATION). American Institute of Aeronautics and Astronautics (June 2017).
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112

27. Dureja, R., Rozier, K.Y.: FuseIC3: An algorithm for checking large design spaces. In: Pro-
ceedings of Formal Methods in Computer-Aided Design (FMCAD). IEEE/ACM, Vienna,
Austria (October 2017)

28. Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verification. pp.
737–744. Springer (2014)

29. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to verify-
ing satellite onboard software. Science of Computer Programming (2013) (March 2013),
http://dx.doi.org/10.1016/j.scico.2013.03.005

30. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking at scale: Auto-
mated air traffic control design space exploration. In: Proceedings of 28th International Con-
ference on Computer Aided Verification (CAV 2016). LNCS, vol. 9780, pp. 3–22. Springer,
Toronto, ON, Canada (July 2016). https://doi.org/10.1007/978-3-319-41540-6_1

31. Goel, A., Sakallah, K.: Avr: abstractly verifying reachability. In: Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part I 26. pp. 413–422. Springer (2020)

32. Gribaudo, M., Horvath, A., Bobbio, A., Tronci, E., Ciancamerla, E., Minichino, M.: Model-
checking based on fluid Petri nets for the temperature control system of the ICARO co-
generative plant. Tech. rep., SAFECOMP, 2434, LNCS (2002)

33. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall Int. Editions
(1991)

34. Hunt, W.: FMCAD organization home page. http://www.cs.utexas.edu/users/
hunt/FMCAD/

35. IEEE: IEEE standard for Verilog hardware description language (2005)
36. IEEE: IEEE standard for VHDL language reference manual (2019)
37. Kessler, F.B.: Verification modulo theories. http://www.vmt-lib.org/, accessed:

2017-09-30

12

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://doi.org/http://dx.doi.org/10.2514/6.2017-3112
http://dx.doi.org/10.1016/j.scico.2013.03.005
https://doi.org/10.1007/978-3-319-41540-6_1
http://www.cs.utexas.edu/users/hunt/FMCAD/
http://www.cs.utexas.edu/users/hunt/FMCAD/
http://www.vmt-lib.org/

38. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.: Model checking
of safety-critical software in the nuclear engineering domain. Reliability Engineering & Sys-
tem Safety 105(0), 104–113 (2012), http://www.sciencedirect.com/science/
article/pii/S0951832012000555

39. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley (2002)

40. Mann, M., Irfan, A., Lonsing, F., Yang, Y., Zhang, H., Brown, K., Gupta, A., Barrett, C.:
Pono: a flexible and extensible SMT-based model checker. In: Computer Aided Verification:
33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings,
Part II 33. pp. 461–474. Springer (2021)

41. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different functional
allocations in automated air traffic control design. In: Proceedings of Formal Methods in
Computer-Aided Design (FMCAD 2015). IEEE/ACM, Austin, Texas, U.S.A (September
2015)

42. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
43. Miller, S.: Will this be formal? In: TPHOLs 5170, pp. 6–11. Springer (2008), http://dx.

doi.org/10.1007/978-3-540-71067-7_2
44. Miller, S.P., Tribble, A.C., Whalen, M.W., Per, M., Heimdahl, E.: Proving the shalls. STTT

8(4-5), 303–319 (2006)
45. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. CSL Technical Report

SRI-CSL-01-02 (Rev. 2), SRI Int’l, 333 Ravenswood Ave., Menlo Park, CA 94025 (Aug
2003)

46. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTOR2, BtorMC, and Boolector 3.0. In: Proc.
30th Int. Conf. on Computer Aided Verification. Lecture Notes in Computer Science, vol.
10981, pp. 587–595. Springer (2018)

47. The nuXmv model checker; available at https://nuxmv.fbk.eu/, 2015
48. Owre, S., Rushby, J., Shankar, N.: Pvs: A prototype verification system. In: Proc. 11th Int’l

Conf. on Automated Deduction. Lecture Notes in Computer Science, vol. 607, pp. 748–752.
Springer (1992)

49. Raimondi, F., Lomuscio, A., Sergot, M.J.: Towards model checking interpreted systems. In:
FAABS 02, LNAI 2699. pp. 115–125. Springer (2002)

50. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs
for system health management of real-time systems. In: Proceedings of the 20th Interna-
tional Conference on Tools and Algorithms f or the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science (LNCS), vol. 8413, pp. 357–372. Springer-
Verlag (April 2014)

51. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfiability check-
ing. In: 17th International Symposium on Formal Methods (FM2011). Lecture Notes in Com-
puter Science (LNCS), vol. 6664, pp. 417–431. Springer-Verlag (2011)

52. Rozier, K.Y., Dureja, R., Irfan, A., Johannsen, C., Nukala, K., Shankar, N., Tinelli, C., Vardi,
M.Y.: Moxi: An intermediate language for symbolic model checking. In: Proceedings of the
30th International Symposium on Model Checking Software (SPIN). LNCS, Springer (April
2024)

53. Rozier, K.Y., Shankar, N., Tinelli, C., Vardi, M.Y.: Developing an open-source, state-of-
the-art symbolic model-checking framework for the model-checking research community.
Online: https://modelchecker.github.io (2019)

54. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: To-
wards real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In: Proceedings of the 2013 Annual Conference of the Prognostics
and Health Ma nagement Society (PHM2013). pp. 381–401 (October 2013)

13

http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://dx.doi.org/10.1007/978-3-540-71067-7_2
http://dx.doi.org/10.1007/978-3-540-71067-7_2
https://nuxmv.fbk.eu/
https://modelchecker.github.io

55. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
sat-solver. In: Proc. 3rd Int’l Conf. on Formal Methods in Computer-Aided Design. Lecture
Notes in Computer Science, vol. 1954, pp. 108–125. Springer (2000)

56. SMTLib. https://smtlib.cs.uiowa.edu/
57. Tribble, A., Miller, S.: Software safety analysis of a flight management system vertical nav-

igation function-a status report. In: DASC. pp. 1.B.1–1.1–9 v1 (2003)
58. Wolf, C.: Yosys open synthesis suite (2016)
59. Yoo, J., Jee, E., Cha, S.: Formal modeling and verification of safety-critical software. Soft-

ware, IEEE 26(3), 42–49 (2009)
60. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination protocol for

an automated air traffic control system. In: Proceedings of the 12th International Workshop
on Automated Verification of Critical Systems (AVoCS 2012). Electronic Communications
of the EASST, vol. 53, pp. 337–353. European Association of Software Science and Tech-
nology (2012)

61. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination protocol for
an automated air traffic control system. Science of Computer Programming Journal 96(3),
337–353 (December 2014)

14

https://smtlib.cs.uiowa.edu/

	 Symbolic Model-Checking Intermediate-Language Tool Suite -0.1in

