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Formal methods encompass a wide choice of techniques and tools for the specification, development, analysis, and verification of

software and hardware systems. Formal methods are widely applied in industry, in activities ranging from the elicitation of requirements

and the early design phases all the way to the deployment, configuration, and runtime monitoring of actual systems. Formal methods

allow one to precisely specify the environment in which a system operates, the requirements and properties that the system should

satisfy, the models of the system used during the various design steps, and the code embedded in the final implementation, as well as

to express conformance relations between these specifications. We present a broad scope of successful applications of formal methods

in industry, not limited to the well-known success stories from the safety-critical domain, like railways and other transportation

systems, but also covering other areas such as lithography manufacturing and cloud security in e-commerce, to name but a few. We

also report testimonies from a number of representatives from industry who, either directly or indirectly, use or have used formal
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methods in their industrial project endeavours. These persons are spread geographically, including Europe, Asia, North and South

America, and the involved projects witness the large coverage of applications of formal methods, not limited to the safety-critical

domain. We thus make a case for the importance of formal methods, and in particular of the capacity to abstract and mathematical

reasoning that are taught as part of any formal methods course. These are fundamental Computer Science skills that graduates should

profit from when working as computer scientists in industry, as confirmed by industry representatives.

CCS Concepts: • Software and its engineering→ Formal methods; • Social and professional topics→ Computer science
education.

Additional Key Words and Phrases: Formal Methods, Computer Science Education

ACM Reference Format:
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Michael Leuschel, Kristin Y. Rozier, Augusto Sampaio, Cristina Seceleanu, Martyn Thomas, Tim A. C. Willemse, and Lijun Zhang.
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1 INTRODUCTION

Formal methods collectively refer to an array of methods for mathematically specifying and verifying computer-system

behaviour. In such approaches, systems are interpreted as mathematically precise structures, whether as state machines,

as functions mapping initial to final states, or as logical formulas describing system behaviour. Specifications also are

given in a mathematically well-founded manner, whether as logical properties or state machines, and the notion of a

system satisfying a specification is also given a mathematical definition. Given these elements, formally verifying a

system involves constructing a mathematical proof that the system satisfies the specification. The key motivation for

these techniques is the strength of the correctness guarantees they provide: in contrast to testing-based and inspection-

based techniques, a proof conclusively demonstrates that the system in question, at the level of abstraction that it is

presented, is correct with respect to its specification. Formal methods complement other verification and validation

techniques, such as testing or simulation [169].

Formal methods have been studied in the computing community since at least the 1960s, with seminal work by

Floyd [133], Hoare [170], and Dijkstra [113] defining techniques for proving programs correct. Later work by Pnueli,

Lamport, Clarke, Emerson, and others considered the automated verification of state machines vis à vis properties in

temporal logics [87, 201, 256]. Still others, including Boyer, Moore, Gordon, and Coquand [66, 100, 152], developed

automated theorem provers for checking the correctness of verification proofs. Later researchers have built on and

improved these efforts, and formal methods remain a vital and fundamental area of basic computing research. Notably, the

Cost of Poor Software Quality (CPSQ) is astonishing. In the 2022 Report
1
for the CPQS in the US, the amount is considered

at least US$ 2,41 trillion. Considering the more specific cost of finding and fixing bugs, the estimation is US$ 607 billion.

Therefore, there is scope for applications of formal methods and tools to improve this situation in several domains, much

beyond the context of safety-critical systems. Historical references from long-time advocates of formal methods reflect

on their industrial application through the metaphors of myths and commandments of formal methods and invite their

uptake in industry in order to realize their benefits [29, 61–65, 84, 102, 161, 162, 195, 227, 249, 276, 287, 298]. Throughout

the last three decades several major surveys of formal methods have appeared in the literature [90, 135, 138, 144, 299].

1
https://www.it-cisq.org/
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This paper demonstrates that formal methods have wide-ranging practical value by reporting on the increasing use

of formal methods in industry, and it makes a case for the inclusion of formal methods as a separate topic in Computer

Science education. This is well agreed upon by the formal methods community. To make this point better known to

the Computer Science community at large and, in particular, to those involved in Computer Science education, the

remainder of this article develops as follows. First, in Section 2, we give more detail about what formal methods are,

precisely. Then, in Section 3, we survey the vast array of formal-methods applications, much beyond the context of

safety-critical systems
2
. In our brief survey, we cite specific instances across a variety of different domains of successful

applications of the techniques in delivering systems that, by their nature, must be reliable. These include very recent

work, which was not available five years ago when the most recent above-mentioned surveys were conducted, as well

as testimonies contributed by current industry leaders. Next, in Section 4, we argue that undergraduate curricula should

include formal methods as a topic, not only because of their growing importance in industry, as witnessed by the

evidence presented in this paper, but also because formal methods contribute to cultivate abstract thinking, enabling

students to better understand and solve complex problems, and because of the discipline they instil in students as they

learn to develop systems. In the words of Rance Cleaveland, “students who learn formal methods are better developers,

because they learn to think about correctness while they are building systems.” Further support for such statements can

be found in [34] and in the accompanying papers [118], which underlines the importance of formal methods thinking

in Computer Science education, and [70], which argues that every computer scientist needs to know formal methods:

“software developers not being aware of the various benefits of formal methods cannot be called computer scientists or

software engineers.” Finally, in Section 5, we conclude the paper.

2 FORMAL METHODS AND TOOLS

Complex, industrial systems typically come into being according to some standardized software development method-

ology. Most methodologies distinguish different phases in the development of a system. While these phases may differ

across development methodologies, and carry different names, in general, there is a requirements analysis phase, an

architecture design phase, a system design phase, and an implementation phase. Each phase yields a set of artefacts.

Apart from describing the type of artefacts delivered at each phase in the development of a system, a methodology

also describes the validation and verification methods and activities needed to ensure the internal consistency of

an artefact, and the consistency of artefacts across different phases. For instance, the artefacts produced during the

requirements phase need to be non-contradictory, whereas the artefacts produced in the design phase need to be

consistent with the artefacts delivered in the requirements phase. Formal methods, and their implementation in widely

available tools, provide automated, repeatable, easily checkable evidence to support these needs. Triggered by their

successful applications in industry, we mostly focus on a posteriori verification of (software) systems. We do not

discuss in detail the verification of formal specifications of requirements nor the alternative of a priori verification

techniques, such as developing correct-by-construction system implementations based on formal methods that provide

correctness-preserving refinement transformations (like in the seminal work on the refinement calculus and related

calculi by Back [10], Morris [231], and Morgan [230], based on Dijkstra’s guarded command language [114]).

In the remainder of this section, we first define and introduce formal methods in Section 2.1, after which we provide

an overview of selected formal methods and tools in Section 2.2.

2
We survey formal-methods applications from well-known and representative domains, including papers and testimonies that have been selected based

on the expertise and experience of the authors, spread geographically as well as across different application domains.
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2.1 What are Formal Methods?

In line with [138], in this paper we define formal methods as mathematically rigorous techniques for the specification,

design, validation, and (manual or automated) verification of software and (logical) hardware systems. In short, formal

methods enable checking that behaviours (statements in a formal semantics such as mathematical logic) always hold in

a system (specified in a language with a formal semantics). They examine the entire behaviour space of the system,

covering all possible inputs, to provide assurance derived from a mathematical proof that the specified system’s

behaviour is correct. In other words, formal methods address the verification problem: given formal definitions of what

a system does (𝑀) and what it should do (𝜑), formal methods show that𝑀 satisfies 𝜑 . Intuitively, formal methods show

that the system does what you think it should do and nothing else.

That last part, “and nothing else,” distinguishes exhaustive formal methods from non-exhaustive methods for

verification, such as testing [14, 50, 58, 226] and simulation [181, 291]. These popular methods reason over the input

space of a system by producing a set of individual system executions. By aggregating a large set of executions, they can

provide probabilistic answers to questions such as: how often does some behaviour occur, how many inputs produce

a certain type of output, or how likely is something to occur. They can provide a proof of the existence of a run of a

system, such as a run that exhibits a fault, but since neither testing nor simulation explores all possible system behaviour

(state space), they can never show the absence of such a run. For that, we need (exhaustive) formal methods.

Formal methods reason over the behaviour space of a system. They yield Boolean (typically true or false, not

probabilistic) answers to questions like: is it possible for something to occur, does this property hold for all system

executions, or even how many system execution paths lead to a certain output. While testing and simulation involve

executing the system many times to gather examples for verification, formal methods tools generally execute once but

reason exhaustively over the complete set of system behaviours, covering all possible executions. This is also why there

is such a variety of formal methods (as opposed to a singular formal method) — different methods scale differently

and different systems require different proof strategies to enable such exhaustive reasoning. Successful application of

formal methods requires some knowledge of the underlying system, and therefore which formal method(s) to apply.

In practice, (exhaustive) formal methods provide quite a different understanding of a system than non-exhaustive or

informal methods. Informal or semi-formal methods refer to techniques and tools that are not fully formal, i.e., lacking a

precise and unambiguously defined syntax and semantics. Formal methods can prove both the presence and the absence

of given behaviour. Because mathematical proofs reason equally well over partially-defined systems as fully-defined

ones, formal methods can check systems starting from the earliest stages of the system design. While simulation and

testing require some form of executable to run, formal methods do not. Nor are formal methods sensitive to systems

being used in ways they were not intended, such as receiving unanticipated inputs. These are precisely the properties

that make formal methods essential tools for industry, e.g., for certifying software and hardware systems, also for

non-safety-critical systems. Anticipating the testimonies from Rod Chapman (Amazon Web Services) in Section 3.6 and

Ivo ter Horst (ASML) in Section 3.8, respectively:

Chapman: “A key point is that AR [automated reasoning] builds trust with customers by allowing universal and

sound verification of properties of our infrastructure and customers’ applications. By “universal,” AWS means

properties that hold for all users, all storage buckets, all networks, all compute instances, all configurations, and

so on — freeing the user from having to “test” a nearly infinite state space.”

Manuscript submitted to ACM
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ter Horst: “To make ASML’s lithography systems run reliably and consistently ASML needs software that sends

unambiguous instructions in every situation to the carefully engineered hardware. One way that ASML ensures

this is by formally verifying (model checking) the specified machine behaviour and automatically generating

correct and semantically equivalent code from those models.”

For this reason, experts continue to argue for the continuous integration of formal methods throughout the complex

industrial system development lifecycle, and for the formal methods education of system developers [138] (cf. Section 3.1).

In our experience, reported in this paper, which covers 50 years of work in industry as well as in academia, most

software projects lack the discipline seen in other branches of engineering. Few developers approach their work with

the understanding that mistakes will be made and that they should select and use the methods and tools that were

designed to prevent errors and to detect errors as early as possible after they are made. Too few Computer Science

graduates work in a way that shows that they understand their responsibility to be able to provide evidence that their

software meets their customer’s or end user’s requirements — and that evidence from testing can never be strong

enough on its own.

This does not mean that we are suggesting that formal methods exclude or are a replacement for testing or simulation.

As mentioned in the Introduction, these are complementary techniques for the central task of verification and validation

(cf. [169] and, for a concrete example, Section 3.9: Formal Testing of Mobile Devices from Natural Language Require-

ments). Our purpose is to emphasize the distinguishing feature of formal methods in being capable of mathematically

ensuring the absence of errors with respect to a given specification.

2.2 Overview of Formal Methods and Tools

Formal methods offer themeans to both formally describe the artefacts delivered at each phase in the system development

lifecycle, and aid in their automated validation and verification [7, 135]. Some tools prove useful throughout the

development methodology; others may specialize to address specific phases and activities. As mentioned in the

beginning of this section, we focus on formal methods for the verification phase. We refer to [70] for a discussion

on formal methods for all phases: identifying and formalizing requirements, modelling and formal specification,

design and implementation, verification and validation, and maintenance and evolution. There are two core formal

(verification) methods from which all other formal (verification) methods derive: model checking [17, 88] and theorem

proving [238, 266].

Theorem provers, such as Coq
3
[51], Isabelle [241], Lean [233], Vampire [264], KeYmaera X [254, 255], LP [140],

PVS [248], Z3 [232], and others allow users to mechanically, and sometimes even automatically, prove generic statements

and theories about system artefacts formalized as mathematical theories. Theorem proving has found its way in tool

sets for state-based refinement approaches (as originally advocated by VDM [188], Z [282], and subsequently B [2, 3]),

such as Atelier B
4
and Event-B

5
. A theorem prover’s independence of specific problem domains is one of its major

strong points. Each theorem prover brings its own library of previous proofs upon which it can draw to efficiently

prove new theorems. Theorem provers differ in the contents of these libraries and in their input logics. Typically users

choose which theorem prover to use for a particular job by choosing the input language that most intuitively describes

the verification question at hand and checking the proof library for previous proofs useful in constructing the needed

proof. While a theorem prover can complete some proofs automatically after the user sets up the theorem correctly,

3
Coq received the 2013 ACM Software System Award.

4
https://www.atelierb.eu/

5
http://www.event-b.org/
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others require substantial interaction from the user to complete the proof, so utilizing previous results from the proof

library and having a clearly-defined proof strategy are essential. Theorem provers are very powerful tools that can

reason about very large, or even infinite-state, systems and complex mathematical algorithms.

Process-algebraic approaches such as ACP [15], CCS [228], CSP [171, 269], LOTOS [57], or LNT [137] have inspired

the development of model-checking toolsets such as CADP
6
[136], CWB [91] / CWB-NC [93], FDR [143], and mCRL2 [9,

75, 157] (cf. [92]). These and other model checkers, such as SPIN
7
[172], NuSMV [86] / nuXmv [80], UPPAAL

8
[38, 39, 109,

110], ProB [211], andABC [69], provide a convenient “push-button” technique for automatically assessing the consistency

of an artefact (e.g., an algorithm or design described in a formal semantics) by automatically verifying whether it

satisfies behavioural specifications typically expressed as assertions or using some form of temporal logic. The industrial

appeal of model checking includes the limited user interaction required to achieve a complete, exhaustive verification

result. To effectively use a model checker, the user needs only two inputs: the formal artefact or system description, and

the logical specification to check it against. The user then pushes a button and receives either confirmation, e.g., in

the form of a certificate, that the system artefact always upholds the specification, or a counterexample proving that

it does not. A counterexample is a system trace stepping state-by-state through a valid execution of the system until

a clear violation of the specification occurs. Counterexamples are therefore incredibly useful for debugging. Model

checkers produce results that are exhaustive: if there exists any system execution that violates the specification, they

will produce a counterexample.

In this way, both theorem provers and model checkers effectively prove both the presence and the absence of bugs.

Moreover, both theorem provers and model checkers require guidance from a knowledgeable user to structure and

organize their specifications, and in the case of theorem provers, also their proofs. Model checkers, on the other hand,

have fully-automatic proofs but come with some limitations when compared to theorem provers. Due to their exhaustive

exploration of the state space, model checkers are sensitive to the shape and size of the state space of the input system

description and often do not allow elements like floating-point variables or unbounded integers. Also, the presence of

superfluous information not relevant to the core algorithm under verification can dramatically slow down the model

checker or cause it to time-out. Therefore the user must be careful to describe only the relevant system logic in the

input description to mitigate the state-space explosion problem, where the number of states needed to model the

system accurately may exceed the amount of available computer memory. “Despite the development of several very

effective methods to combat this problem [. . . ], models of realistic systems may still be too large to fit in memory” [17,

Section 1.2.2: Strengths and Weaknesses].

Similarly to choosing a theorem prover, users choose model checkers based on the efficiency of the input modelling

language at describing the verification problem at hand. There are two types of model checkers, explicit and symbolic,

and some knowledge of which of these two types is best-suited to the problem is also helpful. Explicit model checkers

explicitly represent the systems’s behaviour space as a type of graph in memory and the model checker systematically

explores each state and verifies whether it satisfies the given specification. Such an enumerative representation is suitable

for systems with smaller state spaces, or state spaces with certain types of repeated patterns. Instead of representing

individual states or transitions, symbolic model checkers represent sets of states and sets of transitions symbolically

using data structures such as Boolean formulas or Binary Decision Diagrams (BDDs). Symbolic model checking is

particularly suitable for systems with a large, or even infinite state space. Finally, for both theorem proving and model

6
CADP received the ETAPS Test-of-Time Tool Award 2023.

7
SPIN received the 2001 ACM Software System Award.

8
https://uppaal.org/
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checking, the user must be careful to specify the behaviour property correctly. Since many system requirements

in natural language are vague, incomplete, or confusing, this can be a very challenging task [271]. NASA’s Formal

Requirements Elicitation Tool (FRET)
9
[142] for the elicitation, formalization and understanding of requirements may

be of help. FRET assigns unambiguous semantics to requirements written in a structured natural language and allows

to export the requirements into forms that can be used by a variety of analysis tools, among which Simulink Design

Verifier and SMV (cf., e.g., [123], where it is reported that the industrial partner found the FRET tool “very easy to use”).

Next to these exhaustive qualitative verification techniques, it is worth mentioning exhaustive quantitative methods

such as probabilistic (a.k.a. stochastic) model checking, and non-exhaustive methods such as runtime verification,

model-based testing and statistical model checking, and light-weight formal methods such as static analysis.

Static analysis concerns the derivation of properties of interest from source code (or an intermediate representation)

without executing the code [265], meaning precision is the price to pay. Well-known static analysis tools include

Astrée
10

[112], Coccinelle
11

[204], Frama-C
12

[194], and Lint [187] (cf. [116] for key lessons from designing the static

analyses tools Infer and Zoncolan and [210] for a comparison of the static analysis tools Better Code Hub, CheckStyle,

Coverity Scan, FindBugs, PMD, and SonarQube). Typically, one has to decide between under- and overapproximations

(e.g., abstract interpretation [103]), with the possibility of both false positives and false negatives. Underapproximation
13

is a consequence of an approach representing all possible program behaviours in a way that includes some, but not

necessarily all actual behaviour (thus giving rise to false negatives, i.e., the analysis may fail to detect certain properties

of the code), whereas an overapproximation represents the set of all possible program behaviour in a way that includes

all actual behaviour as well as possibly some that are not possible (thus giving rise to false positives, i.e., the analysis

may detect certain problems that do not actually exist in the code). The choice between under- and overapproximation

depends on the specific goals of the analysis and the trade-off between precision and completeness, where the challenge

is to find a suitable abstraction that is both computationally feasible and provides meaningful insights into the program’s

behaviour while dealing with false positives and false negatives.

Model-based testing is a formal-methods approach to testing that complements formal verification and model

checking and increases the efficiency and effectiveness of software testing [290]. It uses a formal or semi-formal

model to represent the desired behaviour of a system under test, which serves as the basis for generating test cases

and executing tests. It is typically more efficient than traditional testing approaches, since it automates the test case

generation process. Moreover, by systematically deriving test cases from the model, often a better coverage of the

system’s behaviour is achieved. Model-based testing complements other testing methodologies and is part of the broader

landscape of model-driven engineering [73].

Runtime verification monitors and analyzes actual software (and hardware) system behaviour while the system is

running [27, 94]. It offers improved practical applicability and scalability compared to exhaustive formal verification,

such as model checking and theorem proving, by analyzing only one—or a few—execution traces of the actual system.

Runtime monitoring derives from model checking, except that in model checking the running system is the input

system description, so instead of an exhaustive analysis of all possible system runs (like model checking), runtime

monitoring analyses only the “current” system run against the input logical specification (cf. [272] for a disambiguation

from simulation).

9
https://software.nasa.gov/software/ARC-18066-1

10
https://www.astree.ens.fr/

11
https://coccinelle.gitlabpages.inria.fr/website/

12
https://frama-c.com/

13
Not to be confused with underapproximate triples in incorrectness logic [245], a logical underapproximate theory for proving the presence of problems.
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Compared to model checking, which focuses on absolute guarantees of correctness, probabilistic or stochastic model

checking focus on modelling and analyzing systems that exhibit probabilistic or stochastic behaviour [16, 17, 198, 200,

263]. Such aspects are essential in cases of unreliable or unpredictable system behaviour and performance evaluation.

Instead of providing a yes/no answer to the question as to whether a system model (𝑀) satisfies a temporal logic

property (𝜑), the answers are of the form “with a likelihood of 99%,𝑀 will satisfy 𝜑 ,” where 𝜑 is expressed in a stochastic

or probabilistic temporal logic. Statistical model checking [5, 208] uses a simulation- and sample-based approach to

reason about precise properties specified in a stochastic temporal logic, offering a scalability advantage over exhaustive

(or probabilistic) model checking due to the fact that there is no need to analyze entire state spaces. Moreover, even

though the outputs of sample-based methods are not always correct, statistical inference enables quantifying the

confidence in the obtained result
14
, thus compensating for the lack of exact results (100% confidence).

3 FORMAL METHODS IN INDUSTRY

In this section, we present a broad scope of applications of formal methods in industry, not limited to the safety-

critical domain, including testimonies contributed by Rod Chapman from Amazon Web Services, leader in cloud

computing (cf. Section 3.6), and Ivo ter Horst from ASML, leader in the semiconductor industry (cf. Section 3.8). The

reported applications of formal methods in industry range from experiments with formal methods in industry to

routine applications of formal methods in industry as part of the development process. After a summary of recent

literature on successful applications of formal methods in Section 3.1, we describe a selection of success stories for

applying formal methods in the safety-critical domains of railways, automotive, and aerospace in Sections 3.2–3.4.

Subsequently, we report testimonies of success stories in the non-safety-critical domains of operating systems in

Section 3.5, e-commerce in Section 3.6, hardware design in Section 3.7, lithography manufacturing in Section 3.8, and

mobile devices in Section 3.9.

3.1 Summary of Recent Literature

Success stories of the application of formal methods in industry traditionally focus on their application to safety-

critical systems, such as transport, nuclear power plants, and medical devices. Arguably one of the most cited ones

concerns the fatal accidents with the infamous Therac-25 software-controlled radiation therapy machine that were,

among others, due to software coding errors. As demonstrated in [213, 214, 288, 289] (using, among others, the process

algebra LOTOS [57] and the theorem prover LP [140]) these software errors could have been avoided if “basic software

engineering principles” and “sophisticated modeling and analysis tools” had been applied. Alas, what Nancy Leveson

wrote in 1993, “software should be subjected to extensive testing and formal analysis” [214], and in 2017, “it’s time

for computer science practitioners to be better educated about engineering for safety.” [213], is still true. Transport

applications include, but are not limited to, the railway [33, 77, 207] and aerospace [234, 281] domains. We refer to,

e.g., [32, 36, 128, 145, 174, 299] for more complete overviews of such applications. A recent survey among 216 participants

studying the use of formal methods for mission-critical software indicates “an increased intent to apply FMs in industry,

suggesting a positively perceived usefulness” [144].

Outside safety-critical applications, the literature also reports a recent uptake in the application of formal methods [82].

Formal methods have, for example, been applied to ensure the quality of cloud services at Amazon [12, 239], cloud

14
The level of confidence is usually stated as a percentage 100 × (1 − 𝛼 )%, meaning that 100 × (1 − 𝛼 )% of the time the actual expected value belongs to

the confidence interval [𝑋 − 𝛿/2, 𝑋 + 𝛿/2], where 𝑋 is the estimated value, 𝛼 is the confidence, and 𝛿 is the width of the confidence interval, which is

typically determined based on 𝛼 and a large enough 𝑛, the number of samples obtained from 𝑛 independent simulations.

Manuscript submitted to ACM



Formal Methods in Industry 9

databases at Huawei [134], and mobile apps at Facebook [116]. Sadowski et al. [277] describe how formal methods

are integrated in the software development workflow at Google. Godefroid reviews concolic testing and various

forms of fuzzing, which are capable of scaling to Microsoft applications (e.g., Excel or PowerPoint) with millions of

lines of code [146]. Concrete symbolic (concolic) testing is a hybrid software verification technique that performs

symbolic execution along concrete execution paths in an attempt to systematically explore the execution of a program,

focusing on both specific input values (as for traditional testing) and symbolic representations of various alternative

program paths, to achieve improved path coverage compared to traditional testing. Scalability is a challenge due

to the path explosion problem, i.e., the number of possible paths grows significantly as the program’s complexity

increases [280]. Fuzzing is a more light-weight testing technique focused on quickly exploring a large input space by

providing random or semi-random inputs, typically generated by mutation-based or generation-based fuzzing, to a

program to discover vulnerabilities or unexpected behaviour [286]. Formal methods have also been used successfully to

show the incorrectness of widely used software such as Timsort [154], the Java LinkedList implementation [168], and

implementations of the MCS mutual exclusion locks [225] in open-source weak memory models and at Huawei [244],

as well as the correctness of the seL4 operating-system kernel [192, 193] and the CompCert C compiler [26, 55, 183]
15
.

In the same realm, modern programming language features such as Rust’s memory safety and Go’s concurrency have

a solid foundation in formal methods (cf., e.g., [104, 189]). Finally, formal methods have also been applied in other

domains, like in medical imaging for model checking the segmentation of glioblastoma and nevi [22, 41, 42].

A recent survey among 130 experts in formal methods (including 3 Turing Award winners
16
, all 4 FME Fellowship

Award winners
17

and 16 CAV Award winners
18
) investigated the factors that limit the uptake of formal methods in

industry practice. In this survey, 71.5% of the respondents identifies that “engineers lack proper training in formal

methods” as a limiting factor for a wider adoption of formal methods by industry [138, Section 5: Formal Methods in

Industry]. Other key limiting factors are that “academic tools have limitations and are not professionally maintained”

(66.9%), formal methods “are not properly integrated in the industrial design life cycle” (66.9%) and “have a steep

learning curve” (63.8%). Related to this, 62.3% indicates that “developers are reluctant to change their way of working.”

Another survey [138] concludes that “the current situation [of formal methods education] is very heterogeneous across

universities, and many experts call for a standardisation of university curricula with respect to formal methods.”

In the following sections, we describe a selection of success stories of applying formal methods in both safety-critical

(cf. Sections 3.2–3.4) and non-safety-critical domains (cf. Sections 3.5–3.9). Moreover, we relate the formal methods and

tools mentioned in Sections 3.2–3.9 to the comprehensive classifications and explanations in Section 2. We acknowledge

the need for performing more empirical studies on formal methods according to well-established guidelines [35] to

establish at what point formal methods are being applied, which are the most frequently applied techniques and tools,

and related questions. From two recent surveys from the literature involving, respectively, 216 professionals from Europe

and North America using formal methods in dependable systems engineering [144] and 328 papers on formal methods

in railways [128], we know that (i) the professionals employ formal methods mainly for assurance (e.g., proof, error

removal), specification (i.e., formal description techniques), and inspection (e.g., error detection, bug finding), while in

most of the papers formal methods are applied in the Architecture (66%) and Detailed Design (45%) development phases;

15
The seL4 developers received the 2022 ACM Software System Award for “the first industrial-strength, high-performance operating system to have been

the subject of a complete, mechanically-checked proof of full functional correctness;” the 2021 ACM Software System Award went to “CompCert, the first

practically useful optimizing compiler targeting multiple commercial architectures that has a complete, mechanically checked proof of its correctness.”

16
https://amturing.acm.org/byyear.cfm

17
https://www.fmeurope.org/awards/

18
http://i-cav.org/cav-award/
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(ii) the professionals mainly use formal methods analysis techniques for assertion checking, followed by consistency

checking and model checking, while in the papers formal verification is the dominant analysis technique (67%), in

particular model checking (47%) and theorem proving (19.5%), whereas static analysis is hardly used (1%); (iii) the

professionals were not asked for their experiences with formal methods tools as it was left for future work “to find out

which particular FM (and tool) is used in which domain for which particular purpose and role,” while in the papers the

tool landscape is rather scattered with ProB (9%), NuSMV (8%), and UPPAAL (7%) among the most frequently used ones,

but not much more than Atelier B (5%), Event-B/Rodin (4%), SPIN (4%), and Simulink (4%).

3.2 Formal Methods for Railways

Railway signalling used to be done manually by observing trains and operating signals, which is error-prone and

restricts the capacity of railway transportation. Automatic signalling is obviously needed for modern railway control

systems. However, the safety of such automatic systems is crucial as a small error in signalling may have catastrophic

consequences, such as train collisions. Moreover, replacing manual railway signalling with an automatic solution

means huge investments and the extremely high standards of safety make it even more expensive. Formal methods

can be a solution both for ensuring the safety of such systems and saving costs [40, Section 3: Cost-Benefit Analysis].

CENELEC EN 50128 is a European standard for the development of software for use in the railway industry [122]. It

highly recommends formal methods for the design and verification of products that need to meet the highest safety

integrity levels (SIL 3 or SIL 4, i.e., with a maximum accepted probability of dangerous failure between 10
−7

and 10
−9

per

hour). The above mentioned cost-benefit analysis reported, which follows EU guidelines and covers both financial and

economic analysis, is the only such analysis applied to formal methods that we are aware of. We agree with the authors

of [40] who call for “greater attention of the formal methods community to the quantification of costs and benefits

parameters [. . . ] since the evidence of the beneficial effects of formal methods is mostly given instead in the literature

in a qualitative way.” In [247], the authors evaluated (without any monetary measurements) the effect of applying the

commercial formal technique Analytical Software Design (ASD) to an industrial project, and they compared the positive

results concerning code quality (good) and productivity (high) with those of 13 similar projects that used other formal

methods (e.g., B and VDM). The above mentioned recent survey among 130 experts in formal methods also contained

a question that asked the experts to make an informal cost-benefit analysis over time [138, Section 5.3: Return on

Investment]. A small majority of 58.5% of the respondents answered that the application of formal methods is profitable

in medium and long terms; 15% answered that they are immediately profitable and 12.3% that they are profitable in the

long term only, while 2.3% answered that there is no return on investment and 11.5% had no opinion.

From the above mentioned recent survey of the landscape of research on applications of formal methods to the

development of railway systems [128], involving 328 high-quality papers from 1989–2020
19
, we know that formal

methods in railways is a thriving research field with strong industrial ties, since 143 papers were published solely in

the last five years (44% of the total of 328 papers) and 79 papers (24%) involved industry. Well-known success stories

throughout the years concern the development and verification of the Automatic Train Protection (ATP) system for the

RER Line A of Paris [159], the Subway Speed Control System (SSCS) of the subway of Calcutta [108], Line 14 of the

Paris Metro [117], and derivatives thereof, like line 1 or the NY Canarsie line [121], and the driverless Paris–Roissy

Airport shuttle [37], all developed with the B method. B was also used for an industrial scale system-level analysis of

19
The survey was conducted following the guidelines for systematic mapping studies [252]. In particular, the 328 high-quality papers were selected from

an initial set of 4346 papers retrieved from scientific databases upon the application of predefined criteria for inclusion (e.g., the study is written in English

language) and exclusion (e.g., the study does not use a formal or semi-formal method) plus a quality checklist (e.g., is there a clear description of the task

addressed with formal methods?) used for grading the papers. All papers with an insufficient overall quality score were excluded from the selection.
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Alstom’s U400 system [95], which is in operation in about 100 metro lines worldwide. Another success story concerns

the metro control system of Rio de Janeiro, developed with the support of Simulink/Stateflow [125]. Simulink
20

is a

model-based development tool for graphical system design, supporting simulation, test generation and code generation.

A Simulink model’s basic unit is a block diagram such that each block represents a different system component and their

connections represent interactions between these components. Simulink comes with Stateflow, a graphical language

inspired by Harel’s hierarchical statecharts [166], for modelling and simulating the behaviour of complex systems in the

form of state machines and flow charts, and it supports model checking through Simulink Design Verifier, which is part

of the Simulink Verification and Validation tools. Further success stories concern the verification of the ERTMS/ETCS

European standard for railway control and management with NuSMV [85] and of Hybrid ERTMS/ETCS Level 3 with a

variety of formal methods and tools [30, 76]. In particular, in [164], the new system was modelled in B, identifying over

30 issues and using the formal model as a runtime artefact for a real-life demonstration. Moreover, in [6], the system

structure of the movement authority scenario of the Chinese Train Control System Level 3 (CTCS-3) was modelled by

core constructs of the Architectural Analysis and Design Language (AADL) [111, 278], with its extensions Behavior

Language for Embedded Systems with Software (BLESS) [203] for the discrete behaviour and Hybrid CSP [184] for the

continuous behaviour, and verified with the Hybrid Hoare Logic (HHL) Prover [295], an interactive theorem prover

based on Isabelle/HOL. Recently, the Autonomous Positioning System (APS) of the Florence tramways was verified

with the support of the model checker UPPAAL [28]. See [126, 127, 223] for comparisons of different formal methods

and tools for railway system design.

Railway transportation, such as trains, metros, and trams, is one of the most environmentally friendly and energy-

efficient means of transportation. In the domain of railway control systems, a large number of research projects that

involve formal methods have been carried out during the past decades, such as RobustRail
21

and more than one hundred

projects funded under the Shift2Rail initiative
22
, including the X2Rail series. Shift2Rail and its successor Europe’s Rail

are joint efforts of railway stakeholders and the EU to advance the railway domain through innovative research projects

involving both academia and industry, in which formal methods are considered to be fundamental to the provision of

safe and reliable technological advances in railways [33]. Notable initiatives outside the EU are the UK Rail Research

and Innovation Network (UKRRIN)
23

and the Chinese State Key Laboratory of Rail Traffic Control and Safety
24
.

Companies such as Alstom and Siemens are using formal methods, such as the B language, in the development of their

train control systems as well as for data validation [206, 212], notably using the model checker ProB within tools like

Systerel’s OVADO
25

[1, 13] and the ClearSy Data Solver
26
, both of which are certified T2 (i.e., tools where a fault could

lead to an error in the results of verification or validation) for SIL 4 in accordance to the CENELEC EN 50128 standard.

Prover is another industrial leader in formal methods for railway signalling automation. They develop software tools

and services to support railway signalling design automation. Their solution covers a formal high-level language for

formal verification and tools for developing, testing, and verifying railway control systems, like railway interlocking

systems. They apply formal verification techniques, like theorem proving, in their interlocking software, digital twins,

and development tools for railway signalling, which have been used in projects worldwide, like Sweden, Norway, China,

20
https://nl.mathworks.com/products/simulink.html

21
http://www.robustrails.man.dtu.dk

22
https://projects.shift2rail.org

23
https://www.ukrrin.org.uk/

24
http://en.bjtu.edu.cn/research/institute/laboratory/16583.htm

25
https://www.ovado.net/

26
https://www.clearsy.com/en/tools/data-solver/
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France, and Canada
27
. The Prover Certifier formal verification tool, which includes the Prover PSL model checker, is

also certified T2 for SIL 4 in accordance to the CENELEC EN 50128 standard. Moreover, the successful application of

formal methods in Prover shows that formal verification can cut on-site testing time by up-to 50% and detect bugs that

are overlooked by traditional testing
28
: “Formal Verification providesmuch higher coverage than testing. At Prover,

we always find errors when doing formal verification, even on systems that have gone through regular verification”
29

In the near future, the Railway domain is expected to contribute significantly to the European Green Deal by

improved digitalization and data analytics
30
. Challenges include the extension of formal methods and tools to cope

with AI-based systems, such as equipping verification tools with certificate generation, and their integration in the

CENELEC standards [279].

3.3 Formal Methods for Automotive

ISO 26262 is an international standard for functional safety in the automotive industry [179]. It provides guidelines

and requirements for the development of safety-critical electrical and electronic systems (E/E systems) in vehicles.

The standard is focused on ensuring the safety of E/E systems that are involved in the operation of passenger cars,

motorcycles, trucks, and buses. The standard defines a safety life-cycle that encompasses various phases, including

requirements, system, hardware, and software development. It emphasizes the identification and assessment of potential

hazards, as well as the implementation of safety measures to mitigate risks. ISO 26262 also outlines processes for safety

management, hazard analysis, risk assessment, and verification and validation of functional safety, defined as the absence

of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems
31
.

Compliance with ISO 26262 is typically required by regulatory bodies and is expected by customers in the automotive

industry. Adhering to the standard helps ensure that vehicles and their associated systems are designed, developed,

and produced with a focus on safety, reducing the likelihood of failures or malfunctions that could lead to accidents or

injuries. Formal methods are considered the best choice in order to handle complexity and improve confidence in the

automotive system’s correctness, and although not mandated by ISO 26262, they are clearly encouraged and actually

used, as demonstrated in the next paragraphs.

The need for advanced formal methodologies for design, development, and verification of automotive systems

was identified by both industry and academia. Several projects were launched, and many problems were addressed.

The systems modelling language (SysML) [180] is a general-purpose modelling language for systems engineering

applications defined as an extension to UML addressing the structuring of requirements and their verification. Within

several EU research projects, the Architecture Description Language, a metamodel and an ontology for representing

engineering information for automotive embedded systems, called EAST-ADL
32

[56], was developed. EAST-ADL

went further and applied an automotive ontology and representation aligned with AUTOSAR for the structuring of

engineering information. The EAST-ADL model is structured in abstraction levels, where each sub-model represents

the complete embedded system, at the relevant level of detail. The EAST-ADL abstraction levels map to the abstraction

levels given in ISO 26262. EU projects like ATESST, CESAR, SafeCer, MAENAD, and MBAT all addressed the use of

models and tools to automate the representation and formal verification of automotive systems’ requirements.

27
https://www.prover.com

28
https://www.prover.com/categories/verification-validation

29
Daniel Fredholm from Prover Technology in his presentation Formal Verification in the Railway Domain during FME’s “InFM: Industry talks on Formal

Methods” series on May 16, 2024.

30
https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf

31
https://www.iso.org/obp/ui/en/#iso:std:iso:26262:-1:ed-2:v1:en

32
https://www.east-adl.info/
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Volvo Group Trucks Technology (VGTT) in Sweden is a division of Volvo Trucks that is a world-leading truck

manufacturer, providing total transport solutions. In its Model-based Continuous Integration of Automotive Embedded

Systems [215], VGTT applies the following engineering principles in order to address their product development and

process challenges: (i) Go Virtual, to allow daily deliveries and maximize verification confidence while exercising

dangerous and rare events, (ii) Go Rigorous, which requires the use of models, data, and formal verification to provide

means to secure products versus needs and requirements, and allow engineering rigour and automation, (iii) Go

Multi-Method, which incorporates in the engineering workflow a multitude of tools for the model representation

(EAST-ADL, Simulink, the object-oriented, declarative modelling language Modelica
33
, its Association Project Function

Mockup Interface
34
, and the model checker UPPAAL), as well as software-centric and physics-centric simulation (e.g.,

EAST-ADL/Simulink and Function Mockup Units) and formal verification of components’ behaviour and timing (e.g.,

by employing the model-checking toolset UPPAAL), (iv) Go Consistent, to ensure that binaries and components are

faithful realizations of models and code, and (v) Go Continuous to deliver daily/weekly/monthly component versions

and tests. All these methods and tools for modelling and verification have been integrated or are under integration in

VGTT’s ADAPT Integration Environment, leading to development efficiency via iterative and incremental development,

and assured product quality by incorporating formal techniques, such as SAT-based requirements consistency-checking

with the Z3 theorem prover [216, 217] and model checking with the UPPAAL model checker [131, 158, 218], in the

engineering workflow.

The recent rise of autonomous vehicles has brought exciting new challenges to the automotive industry to make

such vehicles safe, reliable, and trustworthy, respect legal regulations, and ready for societal acceptance. These include

dealing with uncertainties and incomplete or inaccurate information, as well as the development of effective formal

methods and tools for the verification of AI-based systems based on transparent and explainable components that can

be certified [219].

3.4 Formal Methods for Aerospace

Formal methods are now an expected and required part of the development processes of intelligent, autonomous, and

safety-critical air and space systems. Their use is codified into flight certification, e.g., by the US Federal Aviation

Administration (FAA) via DO-178B [257], DO-178C [260], DO-333 [259], and DO-254 [258], and in the EU by Regulation

(EU) 2018/1139.
35

International standards agencies IEEE and IEC (International Electrotechnical Commission) maintain

tens of standards for avionics involving formal methods [177, 178]. See [132] for a more detailed discussion of regulations

for formal methods in certification of reliable autonomous systems, which include Unmanned Aerial Systems (UAS),

covering airborne vehicles ranging from toy quadcopters to military UAS and autonomous missiles, but also driverless

trains and self-driving cars.

Systems whose requirements, design, verification, and maintenance were shaped by formal methods continue

to further the frontiers of modern aerospace engineering. For example, explicit-state model checking with model

checkers like SPIN and the software model checker Java PathFinder [292] increased the robustness of the Small Aircraft

Transportation System (SATS) [236]; proved the absence of synchronization faults in the Tactical Separation Assurance

33
https://modelica.org/

34
https://fmi-standard.org/

35
Regulation (EU) 2018/1139 of the European Parliament and of the Council of 4 July 2018 on common rules in the field of civil aviation and establishing a

European Union Aviation Safety Agency, and amending Regulations (EC) No 2111/2005, (EC) No 1008/2008, (EU) No 996/2010, (EU) No 376/2014 and

Directives 2014/30/EU and 2014/53/EU of the European Parliament and of the Council, and repealing Regulations (EC) No 552/2004 and (EC) No 216/2008

of the European Parliament and of the Council and Council Regulation (EEC) No 3922/91: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

32018R1139
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Flight Environment (TSAFE) [52]; verified a design-time hierarchical, concurrent spacecraft model [224]; and analyzed

the Mars Science Laboratory’s flight software [156, 173]. Symbolic model checking of temporal logic formulas [270]

with model checkers like (Nu)SMV / nuXmv verified the Traffic Alert and Collision Avoidance System (TCAS) flying on-

board commercial aircraft [83]; ensured internal aircraft modes followed the A-7E aircraft software requirements [283];

provided the basis for the Correctness, Modelling and Performability of Aerospace Systems (COMPASS) [67]; robustified

Boeing’s AIR6110 wheel braking system [68]; and changed NASA’s design for the NextGen automated air traffic control

system [139, 222, 302]. Such successes convinced the engineers at Dassault Aviation of the feasibility of verifying Esterel

programs [49], which they use for parts of the safety-critical software of flight control systems but also for mission

management systems. Theorem proving with theorem provers like KeYmaera and PVS provided many core verification

results, e.g., for full-scale, real-life air traffic control systems including KB3D pair-wise conflict detection and resolution

algorithms [235], Stratway (a modular approach to strategic conflict resolution) [160], ACCoRD (state-based conflict

detection and resolution algorithms) [237], Chorus (tactical conflict and loss of separation detection and resolution) [78],

and ACAS-X (Airborne Collision Avoidance System X) [182]. The theorem prover Isabelle/HOL [300] provided proofs

for partition scheduling of a commercial real-time operating system implemented following the ARINC 653 international

aerospace industry standard [4].

Next to these exhaustive qualitative verification techniques, the exhaustive quantitative method of probabilistic

model checking, in particular the probabilistic model checker PRISM
36

[199], proved instrumental in increasing the

robustness of ACAS-X [294]; carrying out comparative analysis of automated air traffic control systems [303]; assessing

the reliability, availability, and maintainability of a satellite [250]; and analyzing NASA’s SPIDER distributed, fault-

tolerant operating system [120]. We conclude with non-exhaustive formal methods. Static analysis made possible the

verification of a large, complex software system that provides separation assurance between multiple airplanes up to

20 minutes ahead of time [141]. Dynamic analysis, a scalable alternative to static analysis for models with nonlinear

dynamics, enabled rigorous safety-checking of the nonlinear predicates that arise from dynamics-based predictions

used in alerting logic for a state-of-the-art parallel aircraft landing protocol [119]. Three runtime verification engines

have been designed specifically for aerospace use-cases: NASA Langley’s Copilot [251, 253], DLR’s RTLola [31], and

R2U2 [185, 273].

Advances in the scalability, adaptability, and connectivity of all of these tools and techniques have created an

ecosystem advancing the system lifecycle of robust aerospace systems through their combined use. For example, NASA’s

Lunar Gateway is currently being designed from formal requirements authored as assume-guarantee contracts, verified at

design time and carried through the system lifecycle all the way to on-board, real-time runtime verification [106, 107, 186].

3.5 Formal Methods for Operating Systems

From the beginning, formal methods have been inspired by the problems arising from multi-user operating systems,

especially parallel programming and communication protocols, for which specification languages and automated

protocol validation techniques based on state-space exploration have been developed since the 1970s, e.g., [274, 296].

The application field of formal methods further expanded to also encompass the verification of distributed algorithms,

such as the atomic multicast protocol used for the DELTA-4 distributed dependable architecture [23].

There have been many success stories of formal methods in this area. One can mention the formal verification of the

seL4 general-purpose commercial microkernel using the Isabelle/HOL theorem prover [192, 193], the SLAM verification

36
PRISM received the ETAPS Test-of-Time Tool Award 2024.
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platform based on static analysis and symbolic model checking for analyzing the source code of Microsoft Windows

drivers [18–21], Microsoft’s SAGE whitebox fuzzer, which found roughly one third of all the bugs discovered by file

fuzzing during the development of Windows 7 [147–150], and the Coccinelle static analysis tool for automatically

updating the Linux kernel and drivers [204, 205, 267].

3.6 Formal Methods for Cloud Security and e-Commerce

Amazon Web Services (AWS) has developed and deployed formal and automated reasoning technology for more than a

decade. AWS leadership have recently described a “Golden Age” [275] for automated reasoning (AR), with AR Group

founder Byron Cook noting:

“Formal methods is transforming how Amazon Web Services (AWS) secures the cloud. Security has

historically been a manual, high-judgement and thus un-scalable field; automated formal reasoning is

challenging that entire structure, changing both the quality of AWS products and the cost structure to

support them. The key at AWS has been to avoid “shiny-object syndrome” [99] and instead build and apply

tools that quietly but reliably change the behaviour of engineers. Many leaders at AWS were skeptical of

this type of work in 2016, but the success in areas such as cryptography, identity, storage and virtualization

has changed minds.”

A key point is that AR builds trust with customers by allowing universal and sound verification of properties of AWS’

infrastructure and customers’ applications. By “universal,” AWS means properties that hold for all users, all storage

buckets, all networks, all compute instances, all configurations, and so on — freeing the user from having to “test” a

nearly infinite state space.

The deployment of AR within AWS covers a broad spectrum — from deep proofs of foundational code, through

properties of protocols and internal services, to universal properties of customer-facing applications at enormous scale.

A small selection of examples includes:

(1) At the foundational level, AWS has proven the memory- and type-safety of the first-stage boot code of its

servers [98], giving them confidence that the code is crash-proof and resistant to code injection attacks for

all possible configurations. The authors used the C Bounded Model Checker (CBMC) [89], but mention that

“any other bit-precise, sound, automated static analysis tool could be used.” More recently, AWS has produced a

library, called “s2n-bignum,” that provides primitive operations for elliptic curve field elements and points [163].

These operations underpin billions of cryptographic operations per day. s2n-bignum is the first cryptographic

library that combines formal proofs of functional correctness for multiple variants of the ARM64 and x86_64

micro-architectures, resistance to timing-based side-channel attacks, and performance that is equal to or exceeds

all other contemporary implementations. The s2n-bignum code [167] and proofs are freely available under a

permissive licence.

(2) The AWS authorization system evaluates each request to AWS against relevant access control policies to determine

if access is allowed or denied. An internal service called Zelkova [11] takes in a set of policies and uses automated

reasoning to analyze every possible request that would be allowed by those policies. Under the hood, Zelkova

translates each policy into a set of SMT constraints that are passed to a “portfolio” of solvers, such as the theorem

provers Z3, CVC4 [25] and CVC5 [24] for solving Satisfiability Modulo Theories (SMT) in a “winner-takes-all”

race. In 2019, AWS extended Zelkova to introduce “IAM Access Analyzer,” which removes the burden of requiring

the user to write formal access control specifications. Instead, the tool presents the user with a set of “findings”
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that the user can review and mark as “intended” or “not intended.” This interaction is actually a form of formal

specification refinement, although the user does not have to interact with the underlying formal model. By late

2022, Zelkova and its customer-facing services were generating over 1 Billion SMT queries per day [275]
37
.

(3) In late 2020, AWS announced the availability of strong read-after-write consistency in the S3 storage service.

S3 operates at a currently preposterous scale, storing over 100 Trillion objects and handling over 10 Million

requests per second [293]. Strong consistency ensures that the same view of an object is available to all readers

instantly following a write operation to that object. Consistency properties were specified and verified using

Dafny [209], a verification-aware programming language which uses the Z3 automated theorem prover for

discharging proof obligations. To deal with continued evolution of the system, formal verification activities are

built into the development team’s continuous integration pipeline and run before traditional testing [97].

3.7 Formal Methods for Hardware Design

In the design of modern circuits (e.g., processors, co-processors, systems on chip), the largest part of the effort is

dedicated to testing (which is usually called “verification” in this hardware domain) and “formal verification” (which

implies the use of formal methods). A fair estimation is that more than 50% of the effort is dedicated to verification

(formal or not) [72, 262], which is much higher than what is typically observed in the software industry.

The main difference between hardware and software is the impossibility to apply late patches to circuits, as usually

done to fix bugs and design mistakes in software systems (such as the famous “patch Tuesday” [74]). Some degree

of patching is possible for processors, e.g., by releasing updates for the firmware, or by embedding slow yet reliable

fall-back algorithms, to be used as replacements for modern, highly optimized algorithms if these happen to be wrong

or cause run-time errors. Yet, in most cases, patching circuits after they are shipped is nearly impossible (if these circuits

are embedded in larger systems) and very expensive. For instance, the design error in the Intel Sandy Bridge chipset

cost an estimated US$ 700 million [176].

Formal verification led to many success stories in the hardware-design industry, e.g., for checking the correctness of

implementations of instruction sets, for checking the many communication protocols and distributed algorithms (as

modern circuits heavily rely on concurrency), for checking that code generation produces correct results (this is known

as “equivalence checking”), for checking that asynchronous logic performs well, etc.

Theorem proving is instrumental in the design of correct circuits. For instance, the ACL2 theorem prover
38

[190, 191]

has been used by companies such as AMD, Arm, Centaur Technology, IBM, Intel, Oracle, and Collins Aerospace. For

example, it gave a formal proof that the security policy of the Rockwell Collins AAMP7 microprocessor enforces a static

separation kernel and is thus able to concurrently process information ranging from unclassified to top secret [155, 165].

Model checking also plays an important role in hardware verification. For instance, the Mur𝜙 model checker [115, 285]

and its many derivatives have been helpful for checking cache-coherence and security protocols. Also, the CADP

model-checking toolbox [136] has been used by hardware companies such as Bull, CEA/Leti, STMicroelectronics, and

Tiempo in numerous case studies (cf., e.g., [60, 101, 196, 202, 221, 301]).

CAD tool vendors (e.g., Cadence and Synopsis) provide tools that, to a certain extent, embody formal methods under

the hood. High-level languages such as VHDL or SystemVerilog are used to describe the components, while languages

based on temporal logic, such as SVA or PSL, are used to describe the expected properties. Further dissemination of

formal methods in the hardware industry is currently limited by the insufficient number of experts, an issue that is

37
https://www.amazon.science/blog/a-billion-smt-queries-a-day

38
The Boyer–Moore theorem prover, a precursor to ACL2, received the 2005 ACM Software System Award.
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addressed in various ways: in-house training by experienced engineers, tutorials given by CAD tool vendors, and—more

recently—specific training delivered by small, dedicated service companies
39
. In [81], the specific shortage of verification

engineers in the hardware design domain of microelectronics is addressed, emphasizing the importance of teaching the

“verification mindset,” accelerating the learning curve for verification techniques, and incorporating new paradigms like

AI into the verification process.

3.8 Formal Methods for Lithography Manufacturing

ASML
40

is one of the world’s leading manufacturers of chip-making equipment, such as lithography machines which

drive Moore’s Law [229] forward. Lithography machines are complex cyber-physical systems which use light to print

tiny patterns on silicon; a fundamental step in mass producing microchips.

ASML’s lithography machines aim to print microchip patterns as accurately and consistently as possible, even in

high-volume manufacturing environments. Reliable chip manufacturing requires extremely tailored processes for each

customer, so any unexpected change — even an improvement — comes at a cost. To make ASML’s lithography systems

run reliably and consistently ASML needs software that sends unambiguous instructions in every situation to the

carefully engineered hardware. One way that ASML ensures this is by formally verifying (model checking) the specified

machine behaviour and automatically generating correct and semantically equivalent code from those models [54].

To this aim, ASML uses the Coco platform
41
, which integrates the imperative programming language Coco, designed

for (a)synchronous event-driven software systems based on state machines, with the model checker Cosmos, designed

to formally verify Coco programs (e.g., absence of deadlocks, livelocks, and race conditions, responsiveness, etc.), and is

capable of generating executable code. Cosmos uses a customized process model with respect to the FDR refinement

model checker for CSP that can be resolved without state-space explosion.

ASML applies this development methodology to systems ranging from high-level supervisory machine control

components to low-level drivers, by expressing behaviour in many asynchronously communicating (via formally

defined interfaces) state machines. Some of these state machines have billions of states (reflecting the complexity of

the machine’s behaviour), but even in much smaller ones there are inherent risks of issues like deadlocks and race

conditions. ASML’s experience is that humans have difficulty overseeing all parallel behaviour of even the smaller

state machines. This is a potential risk to consistent machine operation and might even result in downtime. Formal

verification helps ASML engineers to uncover many of these notoriously hard-to-find issues in an early development

phase and has therefore become a critical and cost-effective design aid for ASML.

Formally verifying all desired (e.g., end-to-end) properties is currently infeasible due to various reasons, including the

size and complexity of ASML’s systems. Therefore, ASML incorporates runtime verification techniques in the testing

process, which focus on aspects not already covered by formal verification.

The more code that is generated from formally verified models, the less chance of customers encountering bugs in

ASML’s software. Although that rarely happens, ASML wants it to never happen. By formally verifying more behaviour

and more properties, ASML can get even closer to that goal.

39
Cf., e.g., https://aedvices.com

40
https://asml.com

41
https://cocotec.io/
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3.9 Formal Testing of Mobile Devices from Natural Language Requirements and Other Stories from Brazil

Motorola Mobility, a Lenovo Company, has a partnership of over two decades with the Federal University of Pernambuco,

in Brazil, to conceive a sound, automated, and industrial-scale testing strategy that can be applied in the mobile device

domain. In the period from November 2022 to November 2023, Motorola was ranked second in the mobile vendor market

share in Brazil
42

and eighth worldwide
43
. This is clearly not a safety-critical domain but rather a mission-critical domain,

in the sense that escaped defects can severely affect the reputation of the company and cause significant financial

losses. The overall strategy was implemented in a tool named TaRGeT [129]. It has been used by some Motorola teams

that reported gains between 40% and 50% in productivity related to the overall testing process [130, 242]. Prior to this

cooperation, testing was mainly a manual task in Motorola. Currently, Motorola instead adopts a formal, model-based,

testing approach based on hidden formal methods.

The input to the developed testing strategy [243] is a text document written in a Controlled Natural Language

(CNL), suitable for writing requirements, use cases and test cases, but with formal syntax and semantics. Benefitting

from natural language processing techniques, a formal model (in CSP [171, 269]) is automatically derived from these

requirements. Using the CSP model checker FDR [143], test cases are automatically generated as CSP traces and then

translated back into CNL (for manual execution) or into scripts for several automation frameworks, for automated

execution. The defined formal conformance relation is cspio, a CSP-based conformance relation distinguishing input

and output based on the input/output conformance (ioco) implementation relation for input/output labelled transition

systems (IOLTS) [53], formalized in the traces model of CSP. The reason for adopting an ioco-based relation is that ioco

captures both partial specifications (important in the context of testing mobile devices, as the testing is on a feature-by-

feature basis) and allows reduction of nondeterminism, also useful for allowing implementation choices. Many variants

of ioco have been proposed in the literature (e.g., uioco, mioco, wioco, and sioco) to deal with under-specification, time,

data, and so on. However, while model-based (conformance) testing has been studied intensively, today only a few tools

based on variants of the ioco conformance relation are still maintained actively, such as TESTOR, implemented on top

of CADP [220].

Typically, the underlying formal models of test case generation approaches are IOLTS or other operational models.

The main reason to use CSP as a semantic foundation for the project was that CSP, being a process algebra, offers a

variety of process operators, semantic models, and process refinement notions. This provides a rich infrastructure to

support the characterization of test generation at a very high level of abstraction, and, particularly, agnostic to algorithms

that rely on the model structure. Test generation is accomplished using refinement assertions in the CSP traces model.

The initial generation strategy considered only control flow behaviour, but, subsequently, it was straightforward to

evolve it, in a conservative way, to incorporate data and time as orthogonal aspects.. Concerning the time to generate

the test cases, a tool like TaRGeT is incomparably faster than designing test cases manually. Nevertheless, there are other

activities in the process, beyond test design, that need to be performed both in case the tests are designed manually and

when they are generated automatically. Particularly, the inspection phase takes a significant amount of time.

Currently, more elaborate frameworks are being developed with the aim of covering the full life cycle of test

generation and execution. An exciting area for future investigation is the use of robotic arms to automate test execution

that needs human interaction, based on AI, as well as voice, image, and natural language processing techniques.

Concerning other initiatives on the application of formal methods in Brazil, we single out a cooperation with Embraer,

a Brazilian commercial aircraft company that is currently one of the largest in the world. This partnership has involved

42
https://gs.statcounter.com/vendor-market-share/mobile/brazil

43
https://gs.statcounter.com/vendor-market-share/mobile/worldwide
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both formal verification using Simulink and the probabilistic model checker PRISM [151] and rigorous approaches to

software testing [79], using so-called expanded data-flow reactive systems encoded as TIOTS, an alternative timed

model based on IOLTS and ioco. Another successful cooperation was the one with Bang & Olufsen (B & O) in the

context of the EU project COMPASS. The particular application was a verified design of a leadership election protocol

that ensures the absence of deadlock in the (possibly dynamic) configuration of a network of B & O audio and video

equipments [8], using CSP and the model checker FDR.

4 EDUCATING FOR FORMAL METHODS IN INDUSTRY

It is our firm belief that formal methods, from formal specification to refinement and verification, constitute a core

knowledge area in Computer Science with widespread relevance in many of today’s innovative applications, like reliable

autonomous vehicles and (robotic) systems, in a society that increasingly relies on software. Yet in most of today’s

Computer Science curricula, discrete mathematics and logic courses are often perceived by Computer Science students

as early challenges in their education, apparently disconnected from modern programming languages. “A knowledge

area directly focused on formal methods can help contextualize discrete mathematics courses for students, and can

demonstrate why such courses are taught so early as a starting foundation for a solid computer science education” [70].

Formal methods do not appear in CS2023, the ACM/IEEE-CS/AAAI Computer Science Curricula
44

[197], to the

extent that reflects their pivotal role in Computer Science and the benefits that formal methods education can bring to

industry. CS2023 encompasses 17 knowledge areas
45
. In [34, 70, 118], it is argumented that eight of them are related to

formal methods. Here we list these areas and provide suggestions for what to teach in relation with formal methods:

Algorithmic Foundations Teach to reason (at least informally) about the correctness of the classical algorithms

(e.g., a bug was found in the TimSort sorting algorithm of the Java standard library using formal methods [153]).

Architecture and Organization Teach to validate the accuracy of hardware designs and that the interface be-

haviour of (software and hardware) components in architectural designs adhere to their specifications (e.g., by

verifying security requirements in hardware security architectures [124]).

Artificial Intelligence Teach to capture the assumptions of the designs of deep neural networks as used in large

language models as well as their verification or counterexample-based retraining (e.g., with model checking or

interactive theorem proving [71]).

Parallel and Distributed Computing Teach how to understand and justify the correctness of systems in the

presence of the topics addressed in this knowledge area (e.g., program parallelisation, atomicity, concurrency,

progress, deadlocks, faults, safety, and liveness), which in essence lists formal methods as a prerequisite (viz.,

logic, discrete mathematics, and software engineering foundations).

Security Teach how to understand vulnerabilities of, and threats against, software systems, algorithms and

protocols, ensuring resilience against attacks and providing assurance of security properties (including concepts

like privacy, cryptography, and encryption properties [96]).

Software Development Fundamentals Teach to reason (at least informally) about the correctness of programs

(e.g., by specifying requirements and justifying why these are met by the proposed program [230]) and to

understand how algorithms impact the performance of programs.

Databases Teach description logic for reasoning on data management (e.g., expressing ontologies, integrating

multiple data sources, and expressing and evaluating queries [59]).

44
https://csed.acm.org/

45
https://csed.acm.org/knowledge-areas/
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Software Engineering Teach formal methods, which is actually recommended in this knowledge area (defined as

“mathematically rigorous mechanisms to apply to software, from specification to verification”) as a non-core

knowledge unit with suggested learning outcomes like “describe the role formal specification and analysis

techniques can play in the development of complex software and compare their use as validation and verification

techniques with testing” and “apply formal specification and analysis techniques to software designs and programs

with low complexity,” while testing is the primary validation technique in other modules. As mentioned in

Section 2.1, formal methods and testing are not mutually exclusive.

We believe in the importance of formal methods, and in particular of the capacity to abstract and mathematical reasoning

that are taught as part of any formal methods course, as fundamental Computer Science skills that industry would profit

from when hiring computer scientists. This is highly relevant, since we have seen that formal methods are becoming

widely applied in industry. In Section 3, we have provided evidence of formal-methods applications in industry through

papers and testimonies from representatives who, either directly or indirectly, use or have used formal methods in their

industrial project endeavours. Importantly, they are spread geographically, including Europe, Asia, North and South

America, and involve well-known worldwide companies such as Alstom, Amazon, ASML, Bang & Olufsen, Boeing,

Collins Aerospace, Embraer, Facebook, Google, Huawei, IBM, Intel, Microsoft, Motorola, Oracle, Siemens, and Volvo.

The current offering of formal methods in Computer Science education is inadequate because every Computer Science

graduate needs to be educated in formal methods, since they can support algorithmic problem solving, model-driven

engineering, requirements engineering, security, software architecture, software product lines, and many more areas of

Computer Science, and they are applicable in numerous industrial domains, not limited to safety-critical applications.

This is confirmed by the aforementioned recent survey among 130 experts in formal methods, which also contained

five questions on formal methods in education [138, Section 6: Formal Methods in Education]. The first two questions

addressed the course level and the level of importance, while further questions concerned the content of such courses.

In particular, the first question asked the experts to indicate the most suitable place for formal methods in an ideal

teaching curriculum:When and where should formal methods be taught? A convincing 79.2% responded “in bachelor

courses at the university.” The second question asked the experts about the situation of formal methods in Computer

Science education: What is your opinion on the level of importance currently attributed to teaching of formal methods at

universities? Exactly 50% responded “not enough attention” and 31.5% responded “sufficient attention, but scattered all

over.” These results indicate a consensus about the essential role of education to give the next generations of students a

sufficient background and practical experience in formal methods. This is of paramount importance because in the same

survey, 71.5% of the respondents identified as the single most important limiting factor for a wider adoption of formal

methods by industry the fact that “engineers lack proper training in formal methods” [138, Section 5: Formal Methods in

Industry]. This conclusion is shared by a recent white paper [82], which advocates “the inclusion of a compulsory formal

methods course in Computer Science and software engineering curricula” based on the observation that “there is a lack

of Computer Science graduates who are qualified to apply formal methods in industry,” and by a recent textbook [268]

on formal methods in software engineering, which claims that “in computer science and software engineering education,

Formal Methods usually play a minor role only.” In the context of safety-critical and mission-critical applications, a very

recent paper recognizes “an urgent need to emphasize and integrate Formal Methods into the undergraduate curriculum

in Computer Science in the United States,” since “the lack of a well-structured exposure to formal methods is a serious

shortcoming in our computing curricula” [261]. The authors also provide several concrete suggestions for introducing

the concepts and use of formal methods into existing Computer Science curricula (e.g., Data Structures, Logic circuit
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design, Concepts of programming languages, Software Engineering). “We cannot expect graduates to become experts in

program verification as professionals if they never encountered the ideas as students.” The authors of [105] propose to

approach formal methods already in basic education (i.e., primary and secondary education) through five fundamental

notions (viz., specification, formalization, modelling, verification, and reasoning) and they report on their experience in

doing so (by means of gamification of transformation rules of typed graph grammars using Pac-Man).

Support for teachers is available, for instance through recent textbooks on formal methods [43, 175, 240, 246, 268]

and advanced lectures on formal methods [44–48, 263], but also via Formal Methods Europe (FME)
46

and the ERCIM

working group on Formal Methods for Industrial Critical Systems (FMICS)
47
.

5 CONCLUSION

We have demonstrated that formal methods are important to quite a number of industry segments, not limited to

safety-critical domains, and we have made a case for the inclusion of formal methods as a separate topic in Computer

Science education. This strengthens the evidence put forward in [70] for claiming that formal methods should be taught

as a separate topic in undergraduate curricula, not only because of their importance in industry but also because of the

discipline they instil in students as they learn to develop systems through abstraction and mathematical reasoning, as

demonstrated in [118, 261]. Moreover, we have shown that this can be done without displacing the other “engineering”

aspects of Computer Science already widely accepted as essential. On the contrary, we have shown that formal methods

have the potential to support and strengthen at least eight of the 17 knowledge areas of CS2023.

The formal methods community recently received support from a rather unexpected source. The White House

advocates the use of formal methods over testing for demonstrating the correctness of software and considers it vital

to make formal methods widely accessible to accelerate broad adoption [297, Part II: Securing the Building Blocks

of Cyberspace—Formal Methods]: “Given the complexities of code, testing is a necessary but insufficient step in the

development process to fully reduce vulnerabilities at scale. If correctness is defined as the ability of a piece of software

to meet a specific security requirement, then it is possible to demonstrate correctness using mathematical techniques

called formal methods. These techniques, often used to prove a range of software outcomes, can also be used in a

cybersecurity context and are viable even in complex environments like space. While formal methods have been studied

for decades, their deployment remains limited; further innovation in approaches to make formal methods widely

accessible is vital to accelerate broad adoption. Doing so enables formal methods to serve as another powerful tool

to give software developers greater assurance that entire classes of vulnerabilities, even beyond memory safety bugs,

are absent.” This report highlights static analysis and model checkers as specific examples of types of formal methods.

To conclude, creating correct software is an engineering problem and software development should therefore be

an engineering discipline. Mastering the complexity of software systems is a formidable intellectual challenge and

Computer Science graduates need to understand the powerful formal methods and tools that are available. Then they

can choose the right technique and tool for each task and with suitable humility deserve the title of Software Engineer.
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