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Abstract. The foundations of formal models for epistemic and doxastic
logics often rely on certain logical aspects of modal logics such as S4
and S4.2 and their semantics; however, the corresponding mathematical
results are often stated in papers or books without including a detailed
proof, or a reference to it, that allows the reader to convince themselves
about them. We reinforce the foundations of the epistemic logic S4.2 for
countably many agents by formalizing its soundness and completeness
results for the class of all weakly-directed pre-orders in the proof assis-
tant Isabelle/HOL. This logic corresponds to the knowledge fragment,
i.e., the logic for formulas that may only include knowledge modalities
in Stalnaker’s system for knowledge and belief. Additionally, we formal-
ize the equivalence between two axiomatizations for S4, which are used
depending on the type of semantics given to the modal operators, as one
is commonly used for the relational semantics, and the other one arises
naturally from the topological semantics.

1 Introduction

Epistemic logics are a family of logics that allow us to reason about knowledge
among a group of agents, as well as their knowledge about other’s knowledge[12].
Reasoning about knowledge is useful for detecting and identifying faults during
the operation of complex critical systems [7I25], where important safety proper-
ties are formalized using a modal language that combines temporal, in particular,
LTL (Linear Temporal Logic), and epistemic modal operators, so to verify the
correctness of the system using model checking and related formal fault-detection
techniques [9/19122].

When it comes to modal logics for knowledge, most of these logics correspond
to normal logics between S4 and S5 [11123]. In particular, we consider Stalnaker’s
epistemic logic, which coincides with the logic S4.2. It is known that this logic
strictly stronger than S4, but still weaker than S5 [§]. This logic is known to be
sound and complete with respect to all weakly directed S4-frames, that is, all
frames consisting of reflexive and transitive binary relations that are confluent
[21], but this proof is often omitted in text books where most extensions to
system K (the weakest normal modal logic) are usually treated informally.

* Supported by NSF CAREER Award CNS-1552934.
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Additionally, we encode in Isabelle/HOL the axiomatization of S4 obtained
from the study of the topological interpretation for modal languages, which was
introduced prior to the relational one that is more commonly found in the lit-
erature. This topological interpretation is done by reading the modal necessity
operator as an interior operator on a topological space, for which is known that
the modal logic S4 is complete with respect to all topological spaces [I]. The
preferred axiomatization for the logic of topological spaces differs from the one
presented in [I4], not only from the set of axioms, but also the deductive rules,
since it captures the axioms for an interior operator instead of a reflexive and
transitive binary relation. As a consequence, this makes the topological axiom-
atization not directly recognizable as a normal modal logic, since the deduction
rules seem to be weaker at first glance. Since several authors have been recently
developing topological semantics for notions of knowledge and belief [2I3/4], we
decided to provide a formalization for this result which often times is briefly
mentioned and applied without being proved in detail.

Contributions

We formalize Stalnaker’s epistemic logic, which is expressively equivalent to S4.2,
as well as some intermediate results for the underlying propositional logic and
the modal logics K, .2 and S4 mainly regarding rewriting rules, properties for
maximal consistent sets of formulas, and frame properties that are induces by
the chosen set of axioms in the proof assistant Isabelle/HOL. Our main result
is a formalization of the soundness and completeness of Stalnaker’s epistemic
logic (restricted to countably many agents), which is known to be given by the
system S4.2 [23], with respect to all Weakly—directe(ﬂ S4 frames, this is, all frames
consisting of a non-empty set W and a binary relation R; on W, one for each
agent label 7, that is reflexive, transitive, and that satisfies the property described
by the following condition

VeVyVz (zRiy AN 2Rz = JwyR,w A zR,w).

The proof uses a Henkin-style completeness method, which is commonly used for
this kind of logics [5] and was already available on Isabelle’s Archive of Formal
Proofs [15].

As far as we know, all systems corresponding to some multi-agent epistemic
logic already formalized in Isabelle/HOL, which are all contained in [I5] (the
ground base for our formalization), were complete with respect to a class of
frames that is characterized by a universal formula, i.e. a property of frames that
is given by a first order formula of the form VZ ¢(Z), where ¢(Z) is a quantifier
free formula with variable symbols in T = (x1,...,x,). However, the logic S4.2
isc complete with respect to a class of frames that cannot be characterized using
a universal formula, but instead it is characterized by a universal-existential
formula. This universal-existential characterization makes it harder to formalize

! Binary relations satisfying this condition are also called confluent and convergent in
the literature [20J21].
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its completeness result, since one has to show the existence of an object in the
universe of the canonical model satisfying a condition on a union of consistent
sets of formulas. For this, we followed an argument given by Stalnaker in [24]
that includes a set of theorems that are consequences of the axiom (.2) in K,
which imply the consistency of a set obtained by taking the union of all known
facts for an agent in two different worlds that were accessible from a third one.

Nonetheless, our formalization also includes some intermediate results that
are well known for all normal modal logics, and that are commonly used when
dealing with formal proofs in Hilbert-style systems. Finally, we formalized the
equivalence between two of the most used axiomatizations of S4, the one pre-
sented in [I4] which is commonly used when dealing with the relational semantics
for it [5], and the one introduced by McKinsey and Tarski for the topological
semantics [I].

Related work

Our ground base is the Isabelle/HOL theory EpistemicLogic.thy [I5], which
contains not only the formalization of other epistemic logics such as S4 and S5,
but also formalizes the definition of an abstract canonical model, as well as a
simple and convenient way to work with any desired normal modal logic by
adding necessary the axioms to the basic system K [I4]. A related paper to this
formalization is [26], which contains a broad and updated summary on formal-
izations of logical systems and correspondent important results using different
theorem provers. Other ways to formalize logical systems and their complete-
ness results on Isabelle have also been studied in [10] and [6], which include (but
are not limited to) the use of natural deduction rules, sequent-style rules, and
tableau rules for the formal systems, and coinductive methods for soundness and
completeness results.

However, given the already existent formalization of LTL in Isabelle/HOL
[22], as well as the prevalence of Isabelle as a tool for formal verification of
safety requirements for critical systems, it becomes important to provide this
formalization for this particular proof assistant. In addition to this, in [I7] the
authors defined and investigated the notion of K Bg-structures, which are used
to represent a description of the epistemic status of a rational agent that is not
necessarily aware of their ignorance, and provided a result that matches them
with models of the epistemic logic S4.2. Modal logics between S4.2 and S5 are of
special interest for applications in epistemic logic, since they allow formalizations
of several degrees of ignorance for each one of the agents [20].

The paper is organized as follows: Section [2| introduces the necessary back-
ground on epistemic logic, including its relational and topological semantics, and
how the syntax and the relational semantics were formalized in Isabelle/HOL in
[15]. Sectionexplains our formalization of Stalnaker’s epistemic logic, including
the intermediate results necessary to prove the main results, and the limitations
of these to only countably many agents. Section [4] explains our formalization of
the equivalence between the two most common axiomatizations for S4, the one
that arises from the topological semantics, and the one commonly used when
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working with the relational semantics. Finally, in Section [5} we conclude with a
discussion about the results, limitations, and future work.

2 Background

2.1 Stalnaker’s Epistemic logic

We briefly present the axiomatic system developed by R. Stalnaker for both
notions of knowledge and belief, as well as the main result for the “knowledge
formulas” (i.e. for those formulas that do not contain any belief modal operators),
which correspond to the multimodal system S4.2 [23]. We omit the proof for this
result, as the Isabelle theory “Epistemic logic: Completeness of Modal Logics”
[15] does not support belief formulas.

Consider the well-formed formulas obtained from the following grammar,
where x ranges over the set propositional symbols and i ranges over the set of
agent labels:

o= Llz|oVY oAy |d— Y| Kid|Big.

The operators K; and B; mean “agent ¢ knows” and “agent ¢ believes,” respec-
tively. Although Stalnaker does not present his logic of knowledge and belief
using this exact set of propositional connectives, but a proper subset of these,
we added the remaining ones given that From’s formalization includes all of
them.

Stalnaker’s principles (axioms) for knowledge and belief are presented in
Table [1] as well as their interpretation in natural language. Stalnaker’s logic for
knowledge and belief corresponds to the formal system obtained by adding these
axioms to the axioms and rules of the multi-modal logic S4, that is, the smallest
logic containing the following axioms:

— all propositional tautologies,

— axiom K: (K;(¢ — ¥) A K;0) — K1,
— axiom T: K;¢ — ¢, and

— axiom 4: K;¢ — K;K;¢;

and that is closed under Modus Ponens and the Necesitation rule, “from ¢ infer
K;¢”, where i ranges over the set of agents.

Table 1. Axioms for knowledge and belief.

Bi¢p — K;B;¢ Positive introspection
-Bi¢p = K;—~Bi¢ Negative introspection
K¢ — Biop Knowledge implies belief
Bi¢p — —Bi—¢ Consistency of belief
Bi¢p — B K¢ Strong belief

The following proposition summarizes some relevant properties of this logic.
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Proposition 1. The following are some key properties of Stalnaker’s logic for
knowledge and belief [23].

1. The following equivalences, one for each agent label i and formula ¢, are
theorems in this logic:
Bi¢ — —\Ki—\ 1¢

2. As a consequence of the previous property, by replacing ‘B;’ with “~K;—K;’
in the Consistency of belief aziom, we get that - K;—K;¢ — K;—~K;~¢ (also
known as axiom .2) is a theorem in this logic. This implies that the knowledge
formulas of this logic correspond exactly to the logic given by the system S4.2,
i.e. those that can be obtained from the rules and axioms of the multi-modal
logic S4 in presence of the axiom .2.

The above proposition allows us to interpret this logic by giving a semantics
only for the propositional variables, boolean connectives and knowledge opera-
tors. Formally, we use structures 9 = (F,7) known as Kripke models, where
the frame F = (W, (R;);) is a pair consisting of a non-empty set of worlds W,
a set of binary accessibility relations R; C W x W, one for each agent ¢, and
7 : Var — 2V is a valuation of propositional symbols. Formula satisfiability at
a given world w € W is defined as follows:

Mw = L

Mw =z iff w € m(x)

MwEdVY iff Mw E ¢ or Mw =y
MwEdAY iff M, w = ¢ and M, w =
Mw = éd— P iff M, w = ¢ or Mw =y
Mw E Kid iff Yo € W (wRiwv — M, v |= ¢)
M, w = Bid iff M w = ~KinKid.

One can use functions K : W — 2% instead of sets of ordered pairs R C
W x W, as there is a correspondence between these objects by setting

wRy <= v € K(w),

for all w,v € W.

2.2 Epistemic Logic: Completeness of Modal Logics

The “Epistemic Logic: Completeness of Modal Logics” entry on Isabelle’s AFP
[15] contains not only a formalization for the completeness results for some epis-
temic logics, but it also formalizes the general strategy for Henkin-style proofs
for completeness. This is what allowed us to formalize a proof for the complete-
ness result for S4.2. We show here the formalization of the Kripke models from
[15], which uses functions instead of sets of ordered pairs.

datatype (i, ‘w) kripke =
Kripke (W: <'w set>) (m: <'w = id = bool>) (K: <'i = 'w = 'w set>)
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Consequently, given a Kripke model 9 = (W, (K;);cr, ) with accessibility
functions IC; for each agent i, formula satisfiability is defined by setting

Mw E K¢ iff Yoe Ki(w)(OM,vEe@).

Additionally, the dual operator for each knowledge operator K; is denoted
in this formalization as L; and is defined as a short hand for ‘agent ¢ does not
know if something is false’. In other words, L;¢ := —K;(—¢), for all formulas ¢.
The Kripke semantics for this operator corresponds to [5IS]

Mw = Ligp iff JveKi(w) (M, E ).

We show here the corresponding formalization presented in [I4] for the Kripke
semantics.

primrec semantics :: <(i, 'w) kripke = "w = i fm = bool>
(-~ - E - [50, 50] 50) where
«(M, w | L) = False>

| « (M, wE Proz)=mn Mwz>

| «(M,wE(Vq)=((M wEp) V(M uwEq)
| <M, wE(A)=((MwEp) AMwEq)
‘<(M7w':(p_)q)):((M7w':p)—>(M,w Q))>
|« (M, wEKip)=NveWMNK Miw. M, v |=Dp)

From’s formalization then focuses on proving the soundness and completeness
results for each of the most commonly found normal modal logics in the literature
concerning certain classes of frames [BI8IT4]. We now summarize the relevant
ones for our formalization.

1. The basic logic, K, whose corresponding axiomatic system consists of all
propositional tautologies and the axiom K, and is closed under Modus Po-
nens and the Necessitation Rule, is sound and complete with respect to the
class of all frames.

2. The logic S4 is sound and complete with respect to the class of all transitive
and reflexive frames.

Notice that From’s formalization does not include modal operators for belief,
this restricts ourselves to the knowledge fragment of the language. However,
Proposition [I] tells us that belief is equivalent to knowledge, thus we do not lose
any information by restricting to the knowledge fragment.

2.3 Topological semantics and its axioms

The topological semantics for modal logics was introduced before the relational
semantics that are now a days dominant in this field [I], and it was indeed there
from where the first semantics completeness proof for S4 was produced. Let us
recall now the notion of this topological semantics for a language with a single
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modal operator [J. Let £ be the language composed of all formulas given by the
following grammar:

¢ =z =g|oNY OV Y|P — ¢ O,

where x ranges over the set of propositional symbols Var. Formulas in £ are
interpreted in a topological model M = (W, 7, v), consisting of a non-empty set
W, a topology 7 over W, and a valuation v : Var — 2" in the following way:

- MwEziff ¢ € v(z);

— M,w | ¢ iff M,z (= ¢;

- MwEéAYiff Mz = ¢and M,z | 9

- MwlEoVyiff Mix = ¢ or M,z = 1;

- MwE¢—=¢iff Mz~ ¢or M,z

— M,w | O¢ iff there exists U € 7 such that w € U and M,y = ¢ for all

yeU.

Although there is nothing inherently wrong with using deductive system
presented in [I4] for the logic S4, the following axiomatization to one most com-
monly known is often preferred when working with the topological semantics, as
the meaning of the axioms and rules under this semantics resembles some well
known properties of topological spaces [I].

Table 2. Topological S4 axioms and rules.

Axiom Formula Rule Formula
N aT MP o= ¢
R O A9 © (06 A TY) v
T O¢p — o M =
4 O¢ — 00 U¢ — Oy

Notice that at first it is not obvious weather or not the logic obtained from
this axiomatization is a normal modal logic, often defined as a logic which extends
system K [5], as neither axiom K nor the Necessitation Rule are present in the
list of axioms and rules. However, we formalized a proof for the equivalence
between both axiomatizations in the context of a multi-agent epistemic logic, as
in recent years several authors have been developing topological semantics for
notions of knowledge and belief [2I3/4], where often times this result is briefly
mentioned and applied, but not proved in detail. Nonetheless, it is also worth
noticing here that the relational semantics of S4 is no more than a particular
case for the topological semantics, as one can assign a binary relation to each
topological space by defining what is known as the specialization order [I].

3 Formalization

We now consider the epistemic logic based on the axioms in Table [I] and the
results in Proposition [1| for the knowledge fragment of the language, and we
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prove the soundness and completeness of the pure epistemic logic obtained from
such system with respect to all frames consisting of weakly directed pre-orders.
This is done by combining and applying the results formalized in [14] with some
auxiliary results provided in the Utility section of our Isabelle theory, which
allows us to utilize the canonical model strategy to prove completeness of the
obtained system. We do not formalize a logic for both knowledge and belief, since
we aimed to work on top of the formalization in [I5], which considers modalities
only for knowledge. Formalizing the whole logic for both knowledge and belief
will then require to develop a new theory almost from scratch that includes
modalities for both notions.

In order to do this, we prove first some intermediate results towards the
completeness of the system obtained by adding axiom .2 to the system KEI,
including some results about the underlying propositional logic. This system is
known to be complete with respect to the class of weakly directed frames, and,
although we do not formalize this result completely, we do formalize a version of
the Truth lemma for this system, which is needed so that we can combine it with
the results for system S4 formalized in [I4] to achieve our goal of formalizing
the completeness result for the logic S4.2 with respect to all weakly directed
pre-orders.

3.1 Rewriting propositional and modal formulas

In the deductive system formalized in [I5], deduction from a set of premises is
defined as follows: given a set of formulas I' U {¢}, we say that “¢ is derived
from I (denoted I' F ¢) if there are formulas t)1,...,%, in I' such that the
formula ¥1 — (Y2 — ... (%, — ¢)) is a theorem in the system, where k is a
non-negative integer. It is well known that this formula is logically equivalent
to (1 A ... A1) — ¢ in classical propositional logic, thus the notion can be
defined by requiring the latter to be a theorem in the system instead. Being able
to translate between this two equivalent formulas in our formal deductive system
played an important role for the proof of our main result, thus we provided a
formalization of several results of this kind in the Utility section of our Isabelle
theory, which includes some results that were not used later but that might
become handy for the development of the formalization of other related theories
in the future.

Similarly to the imply function in [I5], which produces, from a list of for-
mulas [¢)1,...,9;] and a formula ¢, the formula ¥; — (Yo — ... (Y = 9)),
we introduced the function conjunct, which takes a list of formulas [¢)1, . . ., ¢y]
and produces the formula ¢ A ... A A T (notice that the input may be an
empty list, in which case the output is T). We formalized some results about
logical equivalences, derived rules and maximal consistent sets regarding the im-
ply and conjunct functions that are well know for the logic K, some of which
are presented in the following lemmas, which are required to prove in section
[3:2) that the axiom .2 induces the weakly directed property on all frames that

% This is also known as system G in the literature [§].
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satisfies it, following [24]. We include the proofs for those lemmas that require
elaborated arguments.

Lemma 1 (Derived rules). For all formulas 11, ..., ¢k, ¢, = (01 AL . Ag) —
¢ if and only if - = (Y2 = ... (Y = @)).

lemma K-imply-conjunct:
assumes <A  imply G p»
shows <A  ((conjunct G) — p)>

lemma K-conjunct-imply:
assumes <A + ((conjunct G) — p)>
shows <A F imply G p»

Lemma 2 (Logical equivalences). The following two lemmas capture the
fact that in system K, hence in any normal modal logic, the formulas (K;¥1 A
AN Kidg) and Ki(1 A ... Adg) are equivalent, for any finite set of formulas
Y1, ..., Yk and any agent i.

lemma K-conjunction-in-mult: <At ((K i (conjunct G)) —> conjunct (map (K i)
G))»

lemma K-conjunction-out-mult: <A F (conjunct (map (K i) G) — (K i (conjunct

@)

Lemma 3 (Closure under conjunctions for MCSs). The following lemma
proves that mazimal consistent sets of formulas are closed under conjunctions,
that is, if I' is a maximal consistent set of formulas and 1, ..., are some
formulas in I', then ¥y A ... N € T.

lemma mcs-conjunction-mult:
assumes <consistent A V> and <maximal A V>
shows <(set (S :: (i fm list)) C V A finite (set S)) — (conjunct S) € V>

Lemma 4. For all formulas ¢,,0, it is the case that
F(Kig ANKp) = 0) = (Ki(¢ A ) — 0)

for any agent label i, as long as the type of i is countable.

lemma K-conj-imply-factor:
fixes A :: <(("i :: countable) fm = bool)>
shows <A+ ((Kip) AN(Kiq) —r) —({(Ki(pAgq) —r)

The assumption over the set of agents labels for the previous lemma is imposed by
the proof that was formalized for it, as it relies on the proof for the completeness
of K in [I5] which requires this condition, as depicted in Figure

Additionally, we formalized the following lemma, which plays a significant
role in the proof of the completeness result for Stalnaker’s epistemic logic in this
formalization, which follows [24].



10 L.P. Gamboa Guzman and K. Y. Rozier

.

N Epistemic_Logic.thy

N
» Extend maximal_extension valid

N

1

! Ax.2 Section
K_conj_imply_factor | : Ax_2

1

1

topoS4_S4

| Ax_2_weak1‘y_directed |

Topological S4 i

Axioms Section mainsa

A,
| mcs_2_weakly_directed |

A,
’ soundness_Ax_2 ‘ imply_completeness_K_2 |

AxS4_2 Fsaz

’ soundness_AxS4_2 ‘ | imply_completeness_S4_4 |

System S4.2 Y
soundnesssas | completenessss |

Section

mains42

Fig. 1. Dependency graph showing the main results and the definitions, abbreviations,
and interpediate results from their proofs that require the countable type condition.
The dotted lines and the grey text show the files or sections of the Isabelle theory corre-
sponding to our formalization where these can be found. Definitions and abbreviations
are represented by rounded rectangles, whereas lemmas and theorems are represented
by rectangles. Those that explicitly mention the countability condition are colored in
blue, and the color orange means that this result is applied using the set of natural
numbers to label the agents.

Lemma 5. Given any pair of formulas ¢,v, (K;o AN Lip) — Li(¢p A) is a
theorem in system K, for every agent label 1.

lemma K-thm: <A+ (Kip) AN (Liq) — Li(pA q)
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Proof. First, notice that - ¢ — (=(¢pAY) — =), hence - K;¢p — K;(=(pAY) —
—1)). On the other hand, we have that - K;(=(¢pAY) — =) = (K= (pAY)) —
K;—), thus F K;¢ — ((K;—(¢ Av)) — K;—p). This implies that F K;¢ —
(Lip — Li(¢ A1), which is equivalent to F (K;¢ A L) — Li(d A ).

3.2 Axiom .2

We formalize axiom schema .2, which when added to the axioms and rules of
system K imposes a structure on the canonical model, namely, we obtain a weakly
directed frame. For this, the inductive command let us define the axiom schema
in such a way that ¢ and p can be instantiated at will, as long as the type for
the agents labels is countable.

inductive Az-2 :: <(i :: countable) fm = bool> where
<Az-2 (ﬁKi(—!Kip) —)K’L‘(ﬂKi(ﬁp))b

A frame F = (W, (R);er) is said to be weakly directed if whenever vR;w and
vR;u, there exists x € W such that wR;z and uR;x, for each i € I. For this, we
formalize this property for Kripke frames as follows:

definition weakly-directed :: <('i, 's) kripke = bool> where
<weakly-directed M =Vi.Vs e WM.VYteW M.VreW M.
(reKMisNteKMis)—EF uveWM (ueKMirAueKMit))

The soundness of axiom schema .2 with respect to weakly directed frames
is formalized in our Isabelle theory, and it follows from the definitions for the
semantics and the weakly directed property. However, proving that the property
holds for the canonical model when adding the axiom to a normal modal logic
is non trivial. Unlike the frame properties imposed by the axioms considered in
the Epistemic Logics formalized in [I4], which are all universal properties, this
property is universal-existential, so to prove that the canonical model has this
property means that one has to show the existence of a possible world satisfying
a property under some assumptions.

Recall that the canonical frame, F* = (W (R$");cr), consists of the
set all maximal consistent sets of formulas (with respect to K+.2) as the set of
possible worlds, W and the accessibility relations R{*" are defined as follows:

FR™A iff  {¢: K;p € T} C A,

for each agent ¢. Thus, showing that the canonical frame for a system including
axiom .2 is weakly directed means that one has to verify that if we have that
{¢: Kip € I'} C Ay and {¢ : K;¢ € '} C Ay for some maximal consistent
sets I', Ay and As, then there exists a maximal consistent set @ such that
{¢: Kip € A} U{¢: K¢ € Ay} C O. This is captured in our formalization
by the following lemma:

Lemma 6 (Weakly directed property and the axiom .2). Suppose that
V,U,W are three maximal consistent sets with respect to a normal modal logic
containing the axiom .2. If VR{*U and V R{*™ W, then there exists a mazximal
consistent set X such that UR{*"X and WR{* X.
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lemma Az-2-weakly-directed:
fixes A :: <(("i :: countable) fm = bool)>
assumes <Vp. Az-2 p — A p> <consistent A V> <mazximal A V>
and <consistent A W» <mazimal A W> <consistent A U> <maximal A U>
and <W € reach A i V> <U € reach A i V>
shows 3 X. (consistent A X) A (mazimal A X) AN X € (reach A i W) N (reach A
i U)>

lemma mecs-2-weakly-directed:
fixes A :: <(("i 2 countable) fm = bool)>
assumes <Vp. Az-2p — A p>
shows <weakly-directed (Kripke (mcss A) pi (reach A))>
unfolding weakly-directed-def

Proof. For the first lemma in our formalization, fix a set of formulas A and three
maximal consistent sets of formulas V,U, W (with respect to A) satisfying the
lemma assumptions for some agent label ¢ of a countable type. Assume towards
contradiction that such set X does not exist, then

S:={¢p: KipeW}U{¢p: K;p €U}

has to be inconsistent with respect to A, hence there are formulas 64,...,0; €
{¢: Kip €U} and oy, ..., 0, € {¢p: K;p € W}, for some k,m € N, such that

A (anp)— 1,

where @« = 01 A... A and 8 = 1 A...Aty,. This implies that A F K; K;(=(aA
B)), since ¢ — L is equivalent to —¢ for every formula ¢, by applying the
Necessitation rule twice. By definition, we have that K;0,,..., K;0; € U and
Kﬂ/}l, e ,Kﬂ/)m S W, thus

KoN...NK0,c€U and Kiwl/\.../\Ki’(/JmEVV,

since these sets are closed under logical consequences. We then use the logical
equivalences and properties for maximal consistent sets from the Utility section
(see section to obtain that K;a € U and K;B € W. This implies that the
formulas L; K;a and L; K; 3 are elements of V', and so is the formula K; L;c, since
V' contains every instance of axiom .2 and is closed under logical consequences.
This implies that (L, K;8) A (K;L;«) € V, thus L;(K;8 A L;a) € V, so there
exists a maximal consistent set Z such that

VR™Z  and K;BALia€ Z.

Applying the lemma K-thm we get that L;(8 A «) € Z, but notice that K;—(a A
B) € Z, thus K;—(8 A «) € Z, which is a contradiction because we have found a
formula ¢ such that ¢, —¢ € Z.

The second lemma follows directly from the previous one.

Note that we have restricted ourselves to countable types for the set of agent
labels in formalization of the previous two lemmas, as we are only allowed to
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extend a consistent set into a maximal one when the language is countable,
because of a dependency shown in Figure [T} Unlike in the respective result for
each normal modal logic formalized in [I4], this restriction to a countable type
was necessary as we were dealing with a universal-existence property and not
with a purely universal one. With that being done, we prove a version of the
Truth lemma for the minimal normal modal logic that includes axiom .2, which is
the relevant result about this system that will allow us to prove the completeness
result for system S4.2 in the next section.

Lemma 7 (Imply completeness for Axiom .2). Let I'U{¢$} be a set of for-
mulas. Suppose that, for all weakly directed Kripke structures M, M,w = I" im-
plies M,w = ¢, for each world w € M. Then there are formulas y1,7v2, ..., Ym €
I' such that
lemma imply-completeness-K-2:

assumes valid: <V (M :: (i :: countable, 'i fm set) kripke). Vw € W M.

weakly-directed M — Vg € G. M, w E q¢) — M, w E p>
shows <3¢s. set gs C G A (Az-2 F imply gs p)»

We omit the proof for this lemma, since it follows the same strategy as the
correspondent ones for the systems formalized in [I5].

3.3 System S4.2

We define system S4.2 as the one obtained by adding to system K the axioms
T, 4 and .2, by making use of the abbreviation @ introduced in [I5] that allows
to combine axiom predicates:

abbreviation SystemS4-2 :: <('i :: countable) fm = bool> (Fsa2 - [50] 50) where
Fsaz p = AzT & Azf ® Az-2 + p»>

Recall that axioms T and 4 impose reflexivity and transitivity on the canon-
ical frame, respectively [5], which was formalized in [I5]. This implies that the
composition of these two with axiom .2 imposes all three conditions on the
canonical frame, which leads to the soundness and completeness of S4.2 with
respect to all weakly directed pre-orders. To prove the completeness result, we
prove first the analog results to Lemmas [6] and [7] but for S4.2 and Kripke models
based on weakly directed preorders.

Lemma 8 (S4.2 and Weakly directed preorders). Let I' U {¢} be a set of
formulas. Suppose that, for all countable Kripke structures M based on weakly
directed preorders, M,w |= I' implies M,w = ¢, for each world w € M. Then,
there are formulas vy1,...,vm € I" such that

|_542’yl—>(—>(’ym—>¢))

lemma imply-completeness-S4-2:
assumes valid: <V (M :: (i = countable, "i fm set) kripke). Vw € W M.
w-directed-preorder M — (Vq¢ € G. M, w = q) — M, w = p>
shows <Jg¢s. set gs C G A (AzS4-2 F imply gs p)»
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This implies that if a formula is valid in all countable Kripke structures based
on weakly directed preorders, then it is a theorem in S4.2.

lemma completenesssaa:

assumes <V (M :: (i :: countable, "i fm set) kripke). Vw € W M. w-directed-preorder
M — M, w E p

shows <Fg42 p>

From this it follows our main result for this logic, namely the completeness
of it with respect to all frames consisting of weakly directed pre-orders.

Theorem 1 (Completeness of S4.2). A formula is valid in all countable

Kripke structures based on weakly directed preorders if and only if it is a theorem
in S4.2.

theorem maingsao: <validsaz p +— Fsa2 p>

4 An alternative axiomatization for System S4

Inspired by the last section of [15], we formalized an alternative axiomatization
for System S4 that is often used when dealing with the topological semantics [1]
for modal operators and we show its equivalence to the one considered in [14].
We formalize the system corresponding to the axioms and rules in Table 2] on
Isabelle, which we call topoS4, and, if a formula ¢ is a theorem in this system,
we denote this by Frop ¢.

inductive System-topoS4 :: <i fm = bool> (Frop - [50] 50) where
A1': <tautology p = Frop P>

| AR: <Frop (K (p A q)) «— (Kip) A Kiq))

| AT <Frop (Kip — p)»

| A" <Frop (Kip — Ki (Kip))»

| AN: <Frop K@ T>

‘ R1" <'_Top p — '_Top (p — q) — |_Top q>

| RM: <Frop (p —> q) = Frop (Kip) — Kiq)

To show that this formulation is equivalent to the one in [I4] (which is based
on [B]), we provide derivations of axiom K and the Necessitation Rule (from ¢
deduct O¢). This is enough as our system already includes axioms T and 4 in
the same fashion as in [I4], and is based over the same propositional logic.

Lemma 9. For all formulas ¢ and ¢, Fiop (K A Ki(¢ — ) — K¢ and, if
Fiop @, then bFiop Kid.

lemma topoS4{-AzK: <trop (Kip ANKi(p— q) — Kigq)
lemma topoS/-NecR:

assumes <-7,p P>
shows<-r1,, K i p>
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Proof. For the first part, notice that ko, (¢ A (¢ — 1)) — 1, since it is an
instance of a propositional tautology. Then, we apply RM to obtain that 4,
Ki(¢ N (¢ — ¢)) — Ko, which implies that Fop (K0 A Ki(¢p — ¢)) — K.
For the second one, suppose that t,, ¢ and notice that Fyop ¢ = (T — ¢),
hence o, T — ¢. Applying RM we get that Fop K; T — K;¢, thus b, K.

From this it then follows that any formula derivable in the classical S4 system
(denoted Fg4) can be derived in our system as well.

Lemma 10. All S4 theorems are theorems in topoSy.
lemma S4-topoS4: <Fsa p = Frop D>

The converse follows by a similar argument, we show that axioms and rules
from our system are all derivable in g4, under the condition that there are only
countably many agents.

Lemma 11. All theorems in topoS/4 are theorems in S4, assuming that there are
only countably many agents.

lemma topoS4-S4:
fixes p :: <('i :: countable) fm>
shows <70, p = kg1 p>

By combining the last two results with the main result for S4 in [14], we obtain
formalized soundness and completeness for this alternative axiomatization of S4
over the class of S4 frames, namely, all reflexive and transitive frames.

Theorem 2 (Soundness and Completeness of topoS4). A formula is valid
in all S4 Kripke models if and only if it is a theorem in topoS/.

theorem mains4”: <validsa p <— (Frop p)>

5 Results, Discussion and Future work

We have formalized the soundness and completeness for Stalnaker’s Epistemic
Logic S4.2 with respect to the class of Kripke frames consisting of weakly-directed
pre-orders for countably many agents, which has not been formalized before nei-
ther in Isabelle, nor in any other publicly available proof assistant. Additionally,
the equivalence between the topological axiomatization of S4 and the in [15] is
also described in this document. The proofs for the main result, as well as for
many of the intermediate results, have been sketched before in multiple sources,
but we were not able to find a unique source that includes a fully detail proof
of this theorem, making this the first work of its kind. Additionally, given the
recent interest in applications of the topological semantics for epistemic modal
operators [2I3/4], some of which coincide with Stalnaker’s epistemic logic, this
provides a reinforcement for the foundations of these works.

We emphasize on the assumption of the cardinality of the set of agent labels,
as it was necessary to impose such restriction even in some definitions in our
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formalization, thus creating a discrepancy with the definitions commonly found
in the literature. We present in Figure [[|a summary of the definitions and results
of our formalization and the one in [I5] that rely on this condition, since the
formalization for the general strategy applied to obtain the completeness results
in [I5] requires it to be able to obtain maximal consistent sets. Although, in
theory, it is possible to provide an argument for the general case using Zorn’s
lemma (this was also later noted in [I4]), which is available in [I3].

Further work in formalizing in Isabelle/HOL of different formal aspects of
modal logics that include S4 operators, as is the case with many temporal logics
like LTL with its always operator, for which a complete axiomatization is already
known [16]; as well as concrete examples of epistemic scenarios based on Stal-
naker’s principles, like the example detailed in [I8]. We hope that this work will
facilitate further work in formalizing different logical systems in Isabelle/HOL.
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