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Today, Unmanned aircraft systems (UAS) are taking on increasingly complex autonomous
missions with various payloads. This paper presents two complete UAS testbed solutions that
are fixed-wing, electric, fully open-source (for both hardware and software), and comprised
of Commercial Off-the-Shelf (COTS) parts. The testbed is affordable, provides easy manu-
facturability, and is highly reconfigurable to meet various customer needs. The paper offers
quantitative and qualitative data from the last four years that contribute to the successes and
learning opportunities for designing, building, and flying an open-sourced UAS. We present
aerodynamic comparisons of CFD data using StarCCM+, stability analysis, power system
analysis, and a workflow to integrate NASA cFS with PX-4 Autopilot using the NASA ICAROUS
Framework. Flight test results and the effects of in-flight controller gain tuning are incorporated
to validate the design and manufacture of both UAS testbeds. A complete documentation
webpage highlights the contributions from this paper.

I. Nomenclature

a = angle of attack

Cq = two dimensional drag coefficient
C; = two dimensional lift coefficient
c = chord

CAD = computer aided design

CFD = computational fluid dynamics
1) = roll angle

PLA = polylactic acid

1/ = yaw angle

P = density

0 = pitch angle

UAS = unmanned air system

Voo = cruise velocity

II. Introduction
HERE are many interesting applications for small, electric fixed-wing UAS. Some notable current applications are
Zipline’s[1] fixed-wing UAS that are actively being used to perform fully autonomous delivery. Other military
drones such as AeroVironment’s Pumal[2] are specialized for GPS-denied navigation. Academic research in such
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applications calls for an appropriate testbed that can support a wide variety of missions and is easy to configure. The
E-flite Apprentice is an affordable testbed, but does not feature the appropriate room needed for additional sensors
or payloads [3]]. The Applied Aeronautics Albatross[4] supports various payloads and features 5-hour battery life, 68
kilometer per hour cruise speed, and closely aligns with the testbed that we are suggesting. In essence, the testbed
should have support for multiple kinds of sensors and should have easily replaceable parts, while also being affordable.

The same argument applies for autopilot software support for fixed-wing UAS. There are many open-source solutions
available, such as PX-4, ArduPilot[5], Paparazzi[6]], and ROSPlane[7]. Out of these, PX-4 has a high availability of
documentation, but only has companion computer support for ROS2[8] that primarily provides quadrotor functionalities.
ROSPIlane bridges this very gap but lacks the plug-and-play capability of PX-4.

We contribute two new versions of the first truly open-source (in both hardware and software) design for a fixed-wing
UAS [3]. Our new version includes appropriate SolidWorks CAD models, specifications for every part, manufacturing
instructions, and a full software setup to facilitate intelligent capabilities. We also present our flight test data on the
maneuverability and autonomous features of our testbeds.

This paper is organized as follows. Section |llI|overviews the OpenUAS design, including CAD modeling, CFD
analysis, and materials considerations. We detail the manufacturing process in Section [[V] including the latest iteration
budget, materials choices, manufacturing process, and lessons learned. To automate the OpenUAS, Section [V]lays
out the electronics and software setup, including details of the electronic hardware, motors, propellers, and batteries.
We include a discussion of our current autopilot setup and our ongoing software integration effort of PX-4 and NASA
cFS[9]l. Accounts of our flight testing and evaluation appear in Section [V1} including flight procedures, and our results
from PID controller tuning and lidar based autoland testing. Section|[VII|discusses impacts and designs for future work.

III. Design

A. OpenUAS Version 2.0 and 3.0 Characteristics

The objectives for both OpenUAS 2.0 and 3.0 are as follows: the design is easily replicable, utilizes a minimal
amount of parts, and follows traditional aircraft structure. The OpenUAS 2.0 SolidWorks CAD design shown in Figure
[Ta]has an endoskeleton fuselage made entirely of 3D-printed pieces and carbon fiber tubes.

The OpenUAS 3.0 SolidWorks CAD design shown in Figure[TD]is strongly influenced by the team’s goal of making
the UAS more accessible to potential customers. The various design changes include the differences in materials used
for construction, and optimizing the tail surfaces.

(a) OpenUAS 2.0 (b) OpenUAS 3.0

Figure 1. SolidWorks 3D CAD Model Isometric Views

Both OpenUAS 2.0 and 3.0 feature a single nose-mounted electric motor for propulsion, a high-mounted wing, a
conventional tail, and a tricycle landing gear configuration. For a comparison of the sizing and weight of each UAS, see
Table [l



Table 1 Aircraft Major Dimensions and Weights

Dimension OpenUAS 2.0 | OpenUAS 3.0
Aircraft Length (in) 44.25 47.75
Aircraft Height (in) 17.25 16.5
Wingspan (in) 64 56

Chord Length (in) 10 10.25
Payload/Electronics Volume (in?) 250 400

B. CFD Data

One of the ways to optimize the design is to perform CFD analysis on the 3D CAD models, using StarCCM+[10].
Performing a stability analysis, will display criterion for steady level flight. Cruise velocity, V., and altitude is set to 40
miles per hour, and 1500 feet, respectively for both cases. The steady level flight angle of attack, « is 0 degrees for
OpenUAS 2.0 and 2 degrees for OpenUAS 3.0, indicated with a black line on Figure[2] Considering OpenUAS 2.0, with
an overall weight of 4 1bs and 7 oz, we conclude the maximum coefficient of lift is 0.9562, and the maximum coefficient
of drag is 0.14. A design goal for OpenUAS 3.0 is to reduce overall drag on the aircraft, which is accomplished by
placing the center of gravity at the quarter wing chord. The overall weight is 4 1bs and 10 oz, which is considerably light
for a UAS. The maximum coefficients of lift and drag for OpenUAS 3.0 are 0.6667 and 0.1196, respectively. Relations
for coefficients of lift and drag with the given parameters are found in Equations [T]and [2]as given in [L.

L
Cr=1—> (1)
spVac
D
Ca=1"3 @
ALY
Cl & Cd vs AOA, OpenUAS 2.0 Cl & Cd vs AOA, OpenUAS 3.0
Cl —#—Cd e (| el Cd
1.20 0.16 0.80 0.14

0.70

0.14 : 0.12

1.00 060

0.80 0.12 0.50 0.10

oo 0.10 0.40 0.08
0.08 0.30

0.40

0.06
0.06 0.20

0.20 0.10 0.04
0.04 0.00

0.00 0.02 010 0.02

-0.20 0.00 -0.20 0.00
5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 5 10 5 4 3 2 -1 0 1 2 3 4 5 6 7 & 9 10

Angle of Attack, deg Angle of Attack, deg

cl
cd
cl
cd

(a) (b)
Figure 2. CFD Data for OpenUAS a) 2.0 and b) 3.0
IV. Manufacturing

A. Manufacturing Process of 3.0

The manufacturing process for OpenUAS 3.0 starts with creating a Bill of Materials (BOM) seen in Table 2] that
outlines the weight and price of materials optimal for the design. The overall weight of the manufacturing materials is
1.7 Ibs, excluding the weight of the electronics.



Table 2 OpenUAS 3.0 Manufacturing Bill of Materials

Components Materials Weight, oz Price

Nose Cone, Fuselage, Wing, | 22" x 28" Poster Board, Balsa Wood 8.15 $37.20

Empennage, Tail

Front Landing Gear DuBro Super Strength Landing Gear Size 0.35-0.50 paired | 5.34 $34.68
with Dubro 3" Super Lite Wheels

Rear Landing Gear DuBro Plane Tailwheel Bracket Size 0.40 paired with | 1.81 $7.82
DuBro 3/4" Tailwheel

Connectors Polymaker PolyLite PLA Filament 0.45 $10.57

Total: 15.75 $90.27

Figure [3 outlines the process for completing the build of the UAS’. Each CAD part that is designed to be made out
of 3D printing is exported as STL files and closely examined to ensure manufacturability quality. The parts are then
imported into Adobe Illustrator to set line thickness and colors for the laser cutting process. The build process can be
modified to the customer’s liking, depending on the materials used and assembly of parts.

Material Procurement

Order and obtain aircraft
components and building
materials.

Design Modifications 3D Printing

Optimize design for flight Use LulzBot TAZ Pro with

testing. the Cura slicer and
Polymaker PolyLite PLA.
Print time approximation
of 30 hours.

Assembly Fabrication

Assembly approximation Approximation of

time of 5-10 hours. fabrication by hand of 3
hours and 1 hour by laser
cutter.

Figure 3. Manufacturing Process Overview

B. Completed Testbed

OpenUAS 2.0 features monokote added to the design, wrapping on the outside of the fuselage, to control airflow
within the body, seen in Figure[a] The fuselage utilizes a clamshell design to access internal electronics, when the wing
is not mounted to the aircraft. Solid light foam makes up the main wing with two carbon fiber spars running horizontally
and attaching to the larger 3D printed tubes sitting on top of the fuselage. The wing can be removed into two sections to
access the fuselage clamshell door. Lastly, there is a carbon fiber boom that runs from the fuselage to the tail surfaces,
which are made from poster board.

The majority of parts for OpenUAS 3.0 are made from inexpensive poster board and 3D printed PLA. OpenUAS
3.0 does not use any carbon fiber, monokote, or other materials that may be more difficult for a customer to purchase
themselves, outside of the electronic components. The fuselage is constructed out of poster board and 3D-printed joints



to attach different sections, see Figure #b] It also has a door on each side to access the electronics and payload. The
wing has internal balsa wood spars, poster board ribs, and a thick skin also made of poster board. It is attached to the
body via rubber bands and tie-down points located on the fuselage. The tail is constructed out of poster board and is
connected by a 3D-printed piece to the empennage, which is made entirely from poster board.

(a) (b)
Figure 4. a) 2.0 Model and b) 3.0 Model

C. Manufacturing Lessons Learned

The process of completing the ribs within the wing for OpenUAS 3.0 poses challenges for creating an ideal airfoil
shape with a round leading edge. The material being 0.1875 inches thick requires precision cutting. Exacto knives
prove to cut effectively, for the ability to utilize readily available tools.

In OpenUAS 2.0, MonoKote film is the primary material for wrapping the bodies, such as the fuselage and wing.
While the MonoKote wrapping does not significantly impact the surface quality of the wing, considering its rigid
CNC-manufactured XPS foam body, it impacts the surface quality of the fuselage. The MonoKote is not the most even
surface, but it allows for the internal structures to be consolidated.

OpenUAS 3.0 considers the challenges with MonoKote and instead uses poster board in both the fuselage and
wing structures. However, the use of poster board poses two main challenges: first being precise cutting of the poster
board to specific part dimensions and second being waste of poster board material. Parts are individually drawn and
cut without optimizing their placement on the poster board. To address these challenges, the team is using a 2D bin
packing algorithm, libnest2D library. Using this library, individual parts are packed onto the poster board as efficiently
as possible. The team marks the poster boards with the coordinates of the individual parts’ corner points and cuts them
with a knife.

V. Electronics and Software
The OpenUAS electronics and software setup is designed with the same principles of accessibility and reconfigurability
in mind. The setup is made completely from Commercial-off-the-shelf (COTS) electronics parts that are affordable and
easily available online. For software, we currently chose the PX-4 Autopilot flight stack due to its fully open source
codebase, support for intelligent capabilities, and user-friendly documentation. In the upcoming subsections, we will
discuss our current electronics setup and our ongoing research into other advanced software functionalities.

A. Motor Selection

We present comparisons of multiple motors paired with the OpenUAS 2.0 and 3.0 airframes in Figure[5] The plot
has been generated using MotoCalc 8[12]. OpenUAS 2.0 utilizes a 690 kilovolts motor and displays optimal flight
conditions at a cruise velocity of 31 miles per hour. OpenUAS 3.0 utilizes a 900 kilovolts motor displays optimal flight
conditions at a cruise velocity of 38 miles per hour.
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——Thrust Required
—Thrust Available (oz)Hacker 900kV, 14 x 7
—Thrust Available (oz)Badass 690kV, 14 x 7
25 Max Range Velocity @43.6 mph

Max Loiter Velocity @33.2
——Stall Velocity @35.635 mph

Total EfficiencyHacker 900kV, 14 x 7

Total EfficiencyBadass 690kV, 14 x 7

Thrust, oz

Velocity, mph

Figure 5. Thrust and Velocity Comparisons for the 690kV and 900kV motor at 100% throttle

The cruise velocity condition of 40 miles per hour, requires 5 ounces of thrust, and unfortunately, neither motor
provides enough thrust to produce this speed, according to the MotoCalc data. However, it is possible to fly the given
aircraft at the mentioned cruise speed at much lesser than 100% throttle in real conditions.

B. Electronics budget

We list the currently supported electrical components in both testbeds in Table |3] Some components come in
bundles and are denoted by a * or ** to indicate that they can be purchased for less money in a bundle together. These
components are the bare minimum to implement an autopilot into OpenUAS 2.0 and 3.0 and exclude options such as
airspeed sensors and lidars, which we still support.

Table 3 Iron Bird OpenUAS Components List

Component Model Price
Flight Computer Holybro Pixhawk 4 Autopilot $170 (SKU20068)*
GPS Holybro Pixhawk 4 Neo-M8N GPS $170 (SKU20068)*
Power Module Holybro APM Power Module 12S - PM02 V3 $170 (SKU20068)*
RC Transceiver FrSky X8R 8/16Ch S.Bus ACCST Telemetry $244.99 (SKU2153)%**

Receiver W/Smart Port
RC controller FrSky Taranis X9D plus $244.99 (SKU2153)**
Telemetry Radios Holybro 433Mhz 915Mhz $39.00

Transceiver Radio Telemetry Set
ESC BadAss Renegade 85A ESC $79.99
Motor BadAss 2826-690Kv brushless motor $69.99
Propeller APC 14x12 E $9.05
Battery Ovonic 5000mAh 11.1V 3S 50C 3 Cell LiPo $32.99

TOTAL: | $613.02




C. Software and NASA cFS Integration

Our current flight stack of choice is PX-4 Autopilot due to its open-source software, readable documentation, and
support for various sensor suites and autonomous capabilities. We are currently investigating companion computer
support for advanced capabilities.

Our focus is to utilize NASA cFS for the fixed wing UAS’, using the open-source NASA ICAROUS|13] framework,
which can also be found on GitHub. This will provide a layered architecture implementation of autonomous flight
software and intelligent features such as runtime verification[14]. The framework interfaces with PX-4 autopilot through
function calls in the apInterface module. Figure [6|references the function names and outlines the data read from the
autopilot and constructs software bus messages or data read from the software bus and sends it to the autopilot. The
current procedure being developed is integrating the apInterface modules from ICAROUS into the NASA cFS software.
The ICAROUS framework and cFS frameworks have a similar makeup of applications, making this an ideal integration.
We are experimenting with including the apInterface modules into the cFS apps modules. However, in our initial test we
experience insufficiently run apInterface modules and display within the cFS user interface. Based on the results we
hypothesize that we are missing multiple header files that need to be included. Our current approach is to use ICAROUS
simultaneously with its own ground station (WebGS), to be able to monitor the UL

PX4 Autopilot
APINTERFACE_ProcessAPData(void)
APINTERFACE_ProcessSBData(void)
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Figure 6. ICAROUS architecture with PX-4 interface functions and WebGS GUI

VL. Flight Test

A. 3.0 Flight Characteristics

The aircraft’s altitude is analyzed during the test flight using two different flight styles. One style is based on
maintaining a stable flight with smooth commands and, therefore, smooth responses. The takeoft conditions for pitch
0, yaw ¢, and roll ¢, consider the aircraft size and fixed wing nature. Those make smoother takeoffs without abrupt
variations of position or attitude in any direction. Gaining altitude and maintaining a steady level flight is an easy task
for this model, presenting a good climb rate and handle during constant high-velocity winds and wind gusts. When
steady level flight is achieved, the plane’s attitude is stable. Pitch, yaw, and roll controls have very slow and smooth
movements. This removes maneuverability from the plane, making it more stable while presenting resistance to abrupt
changes of direction. However, a smoother flight style is advantageous due to its capability to maintain a steady flight
while also having plenty of resistance to wind gusts and sudden turbulence. While under a landing regime, all control
surfaces demonstrate to be capable of the task with the necessary attitude to maintain the flight stable while also being
able to respond to wind changes, turbulence, or other factors that may cause abrupt heading changes and damage the
aircraft in this critical point of the flight.

The second style is a more aggressive flight style where fast response is the focus over smoothness. Starting with
takeoff, the aircraft is able to respond quickly to the pitch input to rotate when the aircraft achieves the ideal takeoff
velocity. During the climb, the pitch response still is quick, but the roll is not as quick to respond as one would like.
Similarly, during cruise, the aircraft handles well with the aggressive inputs for pitch and yaw but sometimes struggles
with the inputs of roll, especially during the downwind to upwind turn. This lack of roll control could be due to the



high-velocity winds and wind gusts or the smaller surface area of the ailerons. Like takeof, the aircraft handles well
during descent and landing. The pitch and yaw controls are responsive, but the roll is not as responsive.

B. PID Controller tuning

We present our PID tuning data and our ongoing process of tuning the OpenUAS 3.0 airframe to provide a more
maneuverable testbed. We will tune the pitch controller since it will be intuitive from a flight test perspective and will
not have a coupled response as is the case for roll and yaw motion.

We start the process by investigating PX-4’s default controller behavior in Simulation-In-Hardware (SIH) simulation
by connecting the Pixhawk 4 to a computer running the QGroundControl[15] ground station via a serial connection.
We present the results in a plot using the PID-Analyzer tool provided by PX-4 Flight Review as shown in[7} The tool
calculates the average step response from multiple instances and shows pitch signal strength with respect to a step input
as a function of time. This serves as a benchmark on how the fixed-wing pitch controller will respond in an environment
with no external disturbances. We observe that this plot still deviates from a theoretical response where there should be
negligible steady-state error.

Step Response for Pitch Angle
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Figure 7. Benchmark pitch response from SIH Simulation

The preliminary flight test is helpful to observe the benchmark conditions. Performing a similar analysis on
OpenUAS 3.0 allows for the observation of each control response. By focusing on the pitch response, we conclude
that it needs additional tuning since it did not reach a given pitch angle setpoint within the tool’s default timeframe
of 0.5 seconds. We conclude that it would be appropriate to first tune the Proportional as well as Integral pitch gains
to provide a quicker pitch response and to reduce steady state error. By doubling the default pitch gain from 0.08 to
0.16, we observe a faster peak time of 0.2 seconds as opposed to approximately 0.35 seconds, seen in Figure[§] As the
proportional gain increases, the oscillations dampen in the pitch rate response. The process of tuning the Integral gain
involves looking at pitch rate command, and adjusting the value to allow for a faster response time with the pitch rate
response, without leading to more oscillations. We plan to continue this process and tune the Integral gain.
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Figure 8. Pitch response during flight test

C. Autonomy

Using the capabilities of the Pixhawk 4 flight controller paired with a GPS module, airspeed sensor, and lidar sensor,
we successfully implement fully autonomous take-off, loiter, and landing. GPS waypoints are configured prior to
take-off via the QGroundControl software. QGroundControl is a comprehensive flight planning and control application
that communicates with drones via the MAVLink protocol. The lidar sensor enables smooth landings, however, sporadic
signal drop outs with the lightware SF11/C sensor are possible. The lidar sensor reports an error code indicating
out-of-range/signal lost when the aircraft’s altitude is well within the 100 meter maximum range of the sensor. When
the lidar sensor reports an error during landing, PX4 will abort and return to loiter for either another landing attempt or
return of manual control. We are currently attempting to debug the cause of failure. We present a notable plot from the
SF11/C lidar sensor in Figure[9] This plot depicts a successful auto-landing and shows some instances of sensor failure
marked by the sudden increase in distance value to 130 meters.
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Figure 9. SF11/C lidar altitude readings (130m indicates out-of-range distance/signal lost error)

VII. Conclusion
Future work advancing from OpenUAS 3.0 to OpenUAS 4.0 includes using a thinner poster board for the main wing,
designing a removable tail configuration, and incorporating an adaptable version of apInterface with cFS and ICAROUS
software.
We will be updating the wing design to incorporate a thinner poster board for the desired airfoil shape. This
adjustment aims to preserve the advantages of the thicker material, such as providing more lift, while mitigating the
manufacturing challenges. Additionally, this shift to a thinner poster board will contribute to a reduction in overall



weight and cost. This targeted approach emphasizes tailoring material choices to specific components within the
manufacturing process to optimize overall performance.

The team uses a laser cutter to achieve straight edges in the poster board to optimize part quality and time consumption.
The team concludes that utilizing the 2D bin packing algorithm libnest2D along with the laser cutter significantly
optimizes the manufacturing process. With the tail design, we want to create a larger control surface area to improve the
flight characteristics. We will be providing a solution by allowing for a detachable conventional tail and v-tail design.

Our next step is to continue analyzing the cFS and ICAROUS software in order to find key differences that may
need to be included in order for apInterface to correctly run within the cFS framework. This integration will allow the
cFS framework to interface with PX-4 autopilot through built-in function calls. It will also allow for ground station
communication with WebGS that can provide flight controls and vehicle setup. Figure [6]depicts a top level view of the
ICAROUS framework and the modules it provides. The team hopes to use these modules to integrate cFS to interface
with PX-4 autopilot. The Hardware-In-the-Loop (HITL) simulation is the appropriate next step of integration with
Simulink and PX-4 in order to get a better theoretical dynamic response. Currently, there are no available airframe
configurations for the fixed-wing aircraft.

Furthermore, we plan to continue flight testing our designs and improving the pitch controller response, and further
implementing a more robust autonomous flight. Given the conclusions of the lidar sensor, we plan to experiment with
other distance sensors with the goal of finding a more reliable sensor for this application.

VIII. Appendix
All contributions presented here can be found on the OpenUAS webpage: https://open-uas.github.io/.
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