
OpenUAS Version 1.0*

Chris Johannsen1, Marcella Anderson1, William Burken3, Ellie Diersen2, John Edgren2,
Colton Glick1, Stephanie Jou2, Adhyaksh Kumar2, John Levandowski2, Evelyn Moyer2, Taylor Roquet2,

Alexander VandeLoo2, and Kristin Yvonne Rozier1,2

Abstract— The future of fixed-wing autonomous aircraft
operations depends on the availability of an appropriate UAS
testbed. The testbed must be accessible: relatively inexpensive
and easy to come by, without requiring long shipping delays
from small international companies. It must be reconfigurable
to accommodate the vast range of different sensor packages,
payloads, use-cases, and flight characteristics needed to accom-
modate a broad variety of autonomy operations. It must be
easy to fix or find replacement parts that will inevitably break
during rigorous testing and it must accommodate safety analysis
on-board with a deep understanding of the aircraft’s design.
Yet no previous fixed-wing UAS meets this need. Therefore, we
contribute the first completely open-source (in both hardware
and software) fixed-wing UAS, designed for reconfigurability
and accessibility of broad audiences from researchers to high
school students.

I. INTRODUCTION
Fixed-wing electric aircraft offer many advantages for AI

and autonomous operations such as surveillance and mapping
tasks; they are a particularly nice testbed for operations
involving safe recovery and resilience. In order to design,
test, and fly increasingly autonomous operations, we need a
fixed-wing UAS testbed that is accessible in terms of both
availability and cost, configurable to host the sensor packages
and on-board computing payloads required for autonomy,
and easy to repair since flights will inevitably result in
occasional loose or broken parts.

However, no currently-available fixed-wing UAS meets
these needs. Larger aircraft, like the 13-foot wingspan NASA
Swift UAS [1] make great testbeds for AI-enabled oper-
ations, e.g., [2], [3] but are too large and expensive for
many research labs and academic uses. Smaller platforms,
like NASA’s 1.14 m wingspan DragonEye UAS [4], [5],
are difficult to re-configure for missions requiring different
sensor suites, have payload capacities that are too oddly
shaped and cramped to facilitate the instrumentation required
for real-time monitoring, restrict internal airflow in a way
that causes AI components like FPGAs or Raspberry Pis
to overheat, have battery lives that are too short to enable

*This work is partially supported by NSF CAREER Award CNS-1664356
and Iowa Space Grant Consortium (ISGC) Award No. 80NSSC20M0107.
Full datasets and documentation are available: http://temporallogic.org/
research/ICUAS21/

1Department of Electrical and Computer Engineering, Iowa State
University, Ames, Iowa, 50011 USA {chrisj17, thing1,
crglick}@iastate.edu

2 Department of Aerospace Engineering, Iowa State University,
Ames, Iowa, 50011 USA {ediersen, edgrenj, johnl,
ssjou, adhyk, elmoyer, troquet, aavande,
kyrozier}@iastate.edu

3 Department of Mechanical Engineering, Iowa State University, Ames,
Iowa, 50011 USA {weburken}@iastate.edu

rigorous experimental field evaluation in complex environ-
ments, and are too restricted or expensive for use in academic
environments [3]. If a battery ages on a DragonEye, it cannot
be replaced since it is fused into the fuselage. If a wire comes
loose during a flight test, it cannot be re-secured without
carefully drilling through the fuselage.

Hobbyist options like the 1.5m wingspan E-flite Appren-
tice solve the cost accessibility challenge with retail prices in
the hundreds of dollars, but are short on room for additional
sensors or payloads needed to host AI operations and are not
reconfigurable [6]. When additional parts can be crammed
in they suffer the same overheating problems as the Dragon
Eye and are also difficult to repair. Perhaps the closest UAS
to meeting the need for an autonomy testbed is the 3 m
wingspan Applied Aeronautics Albatross [7], advertised as
”the first affordable long-range drone.” The albatross has
many desirable characteristics including a 4-hour battery
life, 68 km/h cruise speed, and an easily-accessible, roomy
fuselage that allows for experimental payloads. However, it
is not inexpensive (ready-to-fly systems start at $6,600 USD)
and the beautifully-crafted shell is not easy to repair.

A major problem with purchasing, even “open-source,”
UAS is the frequency with which their designs change,
making it difficult to impossible to get replacement parts.
The design for the Albatross changed in the middle of our
order shipment, causing us to receive some parts from two
different versions of this aircraft; we had to kludge together
the initial craft from these two versions with long wait
periods for new parts and incomplete documentation as to
how they fit together. The E-flight Apprentice has already
been discontinued [8]. The software for these and other UAS
may be open, but there is still no end-to-end release of
the CAD models and specifications for each component, or
the system integration plan as to how they all fit together
(and how changes in any one component affect the rest of
the design).1 To make a truly fixable, reconfigurable UAS
testbed, we need open-sourcing of how the UAS is designed,
including full specifications for manufacturing all parts (not
just software), so replacements or alternatives can always be
quickly manufactured from the open designs.

We contribute the first truly open-source (in both hardware
and software) design for a fixed-wing UAS. This includes
opening CAD models, manufacturing instructions, and all
other data and instructions needed to easily, quickly, and
cheaply manufacture or modify every part of the OpenUAS,

1Some 3D printable UAS parts are available online for a fee [9].

http://temporallogic.org/research/ICUAS21/
http://temporallogic.org/research/ICUAS21/

in addition to all software and procedures for flight testing
and safety. We even add specifications for on-board runtime
verification (RV) via the R2U2 open-source RV engine.2 We
analyze the results from recent flight testing and examine
our design and manufacturing choices to enable others to
specialize and build upon our design.

This paper is organized as follows. Section II overviews
the OpenUAS design, including CAD modeling, parameters
for the wings, vertical, and horizontal tails, stability analysis,
CFD analysis, landing gear, and materials considerations. We
detail the manufacturing process in Section III, including
the materials choices, manufacturing process, and lessons
learned. To automate the OpenUAS, Section IV lays out
the electronics and software schematics, including details
of the electronic hardware, motors, propellers, batteries, and
avenues for control. We include discussions of simulations
and support software. Accounts of our flight testing and
evaluation appear in Section V, including flight procedures,
and our setup for on-board runtime verification. Section VI
discusses impacts and designs for future work.

II. DESIGN
The OpenUAS is a fixed-wing aircraft with a 6 ft wingspan

and a distance from nose to tail of 38 inches. The OpenUAS
uses a tractor styled propulsion system. Figures 1 and 2 show
an isometric view and a right view of the OpenUAS’s CAD
model created through Solidworks.

Fig. 1. Isometric View of OpenUAS in Solidworks; 6 ft wingspan

Fig. 2. Right View of OpenUAS in Solidworks; 38 inchs nose-to-tail

A. CAD Modeling

We modeled the OpenUAS in Solidworks, creating full
CAD models of each of the OpenUAS model’s components.

2http://r2u2.temporallogic.org/

This approach leads to comprehensive documentation of the
UAS and each of its components.

1) Wings and Airfoil Selection: For this design, four
airfoils were studied for comparison. These include the
AG35, NACA 4512, S1223, and Clark Y. The data for each
airfoil was extracted from the UIUC Airfoil Database [10].
The NACA 4512 was the preliminary choice of airfoil due
to familiarity from an initial study by the team using this
airfoil. We analyzed the airfoils using the program XFLR5
[11] under the following conditions: a Reynolds number of
172,000 corresponding to a speed of 20 m/s, chord width of
0.122 m, and kinematic viscosity of 1.4207x10-5 m2/s. This
corresponds to a Mach number of 0.0059.

The following graphs were analyzed with XFLR5: Cl vs
α, Cl/Cd vs α, Cl vs Cd. With the graphs, the information
for the Cl,0, Cl,max, stall angle, Cd,min, and maximum
efficiency Emax was extracted. An analysis using a modified
version of the Weighted Scoring Method shown in [12] was
used. Each parameter has a multiplier and points between
1-4 based on how the parameters for each airfoil compare to
each other.

Table I shows the weighted results between the NACA
4512 airfoil and the Clark Y airfoil chosen for the design.
Additional documentation of our airfoil selection process can
be found in [13]. The wings in the model have a 2◦ dihedral
angle that provides more stability on the OpenUAS.

Parameter NACA 4512 Clark Y Multiplier
Cl,0 2 3 1.2

Cl,max 3 1 1.25
αstall 1 3 1.15
Cdmin

2 3 1.15
Emax 4 3 1.25

Total Points 14.6 15.5

TABLE I
AIRFOIL WEIGHTED RESULTS USING MODIFIED WEIGHTED SCORING

METHOD AND POINTS BETWEEN 1-4 BASED ON AIRFOIL COMPARISON

OF EACH PARAMETER

2) Vertical and Horizontal Tails: We selected the NACA
0012 airfoil for the tail section due to its symmetry and
because of its typical usage for tail sections in RC planes.
The horizontal tail has a span of 24 inches with 35% of its
chord allocated for the elevators. The vertical tail has a height
of 6 inches with 25% of its chord allocated for the rudder.
Details of the tail sizing can be found on the supplemental
website [14]. The horizontal and vertical tails are 24 and 22
inches behind the leading edge of the wing at the root chord
respectively.

B. Stabilty Analysis

After completing the CAD model of the OpenUAS, we
conducted a stability analysis using AVL [15]. We use the air-
foil and geometric specifications of the OpenUAS to model
the wing and tail sections. The center of gravity is calculated
using the CAD model and used with the normal point value
from AVL to get the static margin of the OpenUAS. Figure 3
shows the AVL geometry.

http://r2u2.temporallogic.org/

Fig. 3. AVL Geometry showing Wing-Tail Relation, 2◦ Dihedral Angle,
and 24-inch distance between Horizontal Tail and Wing

Running the simulation, the neutral point obtained is
located 0.10672 m behind the wings’ leading edge. Using
this value with the center of gravity located at 30% of the
wing chord (0.06096 m from leading edge) and the 8-inch
chord value, the static margin is 22.5%.

We analyzed the static stability by looking for the fol-
lowing stability derivatives: the pitching moment coefficient
with respect to the angle of attack (Cmα), the rolling moment
coefficient with respect to sideslip angle (Clβ), and the
yawing moment coefficient with respect to sideslip angle
(Cnβ). Recall that for static stability, Cmα and Clβ should
be negative while Cnβ should be positive. From the analysis
done in AVL, the 3 stability derivatives are in the expected
ranges. This confirms the model is statically stable. The
results for the stability derivatives appear in Table II.

Stability Derivative Value Returned
Cmα -1.0458
Clβ -0.0429
Cnβ 0.0166

TABLE II
STABILITY DERIVATIVES AVL RESULTS

The OpenUAS has an electronics bay holding the elec-
tronic hardware in Table IV. In this bay, the battery is placed
in line with the 30% wing chord location. The battery may
also be shifted slightly forward or backward, thus enabling
the adjustment of the center of gravity location as needed.

C. CFD Analysis

We conducted CFD analysis of the OpenUAS model using
StarCCM+ [16]. We created and ran simulations using take-
off data in Ames, Iowa. The simulations were run at angles
of attack ranging between 0 and 18 degrees with increases of
3 degrees. Each simulation was run for 4000 iterations and
used over 12 million cells. From the simulations, we obtain
the values for the lift and drag coefficients as well as the
lift and drag generated. We also generated four performance
curves: Cl vs α, Cd vs α, Cm vs α, and L/D vs α. From
these curves, we optimized the design until the lift generated
was higher than the weight of the OpenUAS and the Cm vs
α curve showed a negative slope.

D. Additional Design Work

1) Landing Gear: For the initial flight, the OpenUAS had
no landing gear, but this was added shortly after. This allows
the OpenUAS to take off and land on unimproved runways,

reducing the impact from a belly landing. Two options were
considered based on off the shelf products: conventional
(tailwheel) and tricycle (nose wheel). After some analysis,
the tailwheel option was selected, designed in Solidworks,
and added to the model. The landing gear was bolted to the
lower surface of the fuselage and the tailwheel was mounted
below the vertical stabilizer. Figure 4 shows the model with
the addition of the conventional landing gear.

Fig. 4. OpenUAS Model in Solidworks with Conventional Landing Gear
and Material Considerations

2) Material Considerations: The current wings and fuse-
lage are designed in carbon fiber. Given the importance of
accessibility and ease of manufacturing for the design, we
understand that completing carbon fiber layups for the wing
and tail pieces may not always be a viable option for all
interested parties. The materials to complete this process are
expensive and not everyone is familiar with the handling of
carbon fiber or composites. As such, the team is creating
design variations that remove the need of doing the carbon
fiber layup by including carbon fiber rods inside the wings
and tail sections that would add strength to the components
and reduce the weight added with the fiber and epoxy.
Further tests will be completed to finalize the manufacturing
process for future variations of the OpenUAS.

III. MANUFACTURING

A. Material Choices

Materials are chosen based on three main characteristics:
low weight, high strength, and endurance. Therefore, the bulk
of the OpenUAS is constructed using carbon fiber for its
combination of high strength and low density (270 ksi and
1.75 lb/yard). The layups are done on XPS 25 pink foam
molds. They are finished with a variety of dremels, hand
sanders, and files used with P95 masks to mitigate the effects
of the airborne carbon fiber particles.

The wing support is manufactured out of fiberglass to
ensure the structural integrity of the connection between
the wings and fuselage. The electronics bay is made out of
posterboard to keep the overall weight low without sacrific-
ing structural integrity of integral parts.

The rest of the parts are purchased ready-to-use from
a variety of sources, including the landing gear, various
fasteners, and tail boom. These parts differentiate themselves
from the others due to their complexity, small tolerances, and
purchasing accessibility.

To launch the OpenUAS, we designed a launch rail con-
sisting of 1

2 inch bolts and 1 1
2 inch square aluminum tubing.

Component Material Price
Fuselage, Nose
Cone, Wings,
Tail construction

Toray T300 Carbon fiber layout on
XPS 25 pink foam using 250 F epoxy
resin

$250

Electronics Bay Poster board (substituted for fiber-
glass)

$5.00

Wing Support Fiberglass $18.00
Front Landing
Gear

DuBro Super Strength Landing Gear
(.35-.5) paired with DuBro 3” Super
Lite Wheels

$20.00

Rear Landing
Gear

DuBro .4 Plane Tailwheel Bracket
paired with DuBro 3/4” Tailwheel

$ 3.40

Wing Fasteners Great Planes Nylon Wing Bolts 1/4 -
20x2

$6.50

Epoxy JB Weld 5 Minute Epoxy $6.98
Launch Rail
Frame

1.5” aluminum square tubing (39ft) $110

Launch Rail In-
terface

80/20 1010 1” Rails (12ft) $60

Launch Rail Fas-
teners

1/2” Steel Bolts $10

Launch Rail In-
terface Hardware

Standard 1” Rail Buttons $6.70

Launch Rail Car-
rier

3D printed PLA $.50

Total $497.08

TABLE III
OPENUAS V1.0 MANUFACTURING MATERIALS PARTS LIST

We chose a bungee cord as the propulsion mechanism: this
allows for manipulation of the force exerted by controlling
the length of the cord and the number of lengths used to
launch the craft. Additionally, we 3D printed a craft carrier.
3D printing permitted the carrier to be manufactured in one
piece with complicated geometry. This process is avoided
for parts on the OpenUAS because the final pieces produced
with PLA (polyactic acid) filament are too dense and heavy
for the performance of the material provided.

B. Manufacturing Process

The high-level manufacturing process of the OpenUAS
appears in Figure 5. We start by creating male molds that
are used to create the carbon fiber exterior. The parts are
created using a CNC machine with XPS pink foam material.
Each component is made using a wet carbon fiber layup
process and cured for 24 hours within a vacuum bag to
apply pressure. Once cured, each part is sanded using a basic
palm sander and trimmed using a dremel to fit the final
specs of the design. The nose cone and the body require
more extensive post-processing since the foam mold needs
to be chipped out of the interiors (using hand tools such as
a flathead screwdriver and X-Acto knife) to make space for
the electronic components used to control the vehicle. We
do not remove the foam mold from any other parts, such as
the wings and tail struts, due to the added stiffness and low
weight of the foam.

We then construct the electronics bay and the connection
points between the different sections of the vehicle. The
pieces of the electronics bay are cut out of posterboard
with an X-acto knife and epoxied together using five-minute
epoxy. The electronics bay is then glued to the nose cone to
make them into one piece/assembly. Bolt holes are drilled
into the body, wings, and nose cone. Nuts are then epoxied

Fig. 5. Manufacturing Process Flow Chart. Green processes represent those
working with carbon fiber. Purple processes represent the electronics and thir
interfaces. Blue processes represent aluminum cutting and drilling. Yellow
represents 3D printed processes. Red represents the combination of all. The
OpenUAS (left) and its launch rail (right) represent parallel processes.

on the back side because threads can not be made carbon
fiber or fiberglass. The tail boom is mounted into the body
using an extra piece of XPS foam and five-minute epoxy.
Small holes are then drilled into the tail boom to hold the
support bars for the tail struts, and the tail struts are mounted
once this was completed.

The basic design of the launch rail was to mirror a large
crossbow that had been lifted above the ground. To do this,
the launch rail system is made out of cost-effective aluminum
extruded stock and designed to be cut, drilled, and assembled
as easily as possible.

Manufacturing the rail requires only a low-torque hand
drill, a Dremel, and a basic hacksaw. We start by cutting the
launch rail down to size using the hacksaw then we use a
dremel for smaller parts that must be finished or cut in more
intricate shapes than a hacksaw allows. The bolt holes for
the launch rail are then drilled out. We mark these holes by
indenting their centers, drilling a spot hole with an 1

8 inch
drill bit, and then drilling the final 1

2 inch hole. To ensure
proper alignment of these bolt holes, not all are drilled at
first and instead are drilled once the rail system was partially
assembled and the other holes could line up over them. The
launch rail is then finished using a hand file to ensure there
are no sharp edges or rough patches.

Another important piece of the launch rail is the interface
between the rail itself and the OpenUAS. This piece (the
“Launch Carrier”) was printed out of PLA plastic filament on
a LulzBot Taz 6. The design is made to be light as possible,
modular, and able to fit the OpenUAS in its basket. We
partitioned the design into six subsections due to the print

space of the LulzBot and the size of this component. These
pieces are then glued together using JB Weld five-minute
epoxy. The launch carrier is interfaced into the launch rail
system using 1010 rail buttons that are typically used in the
model rocketry community, which allows for a smooth and
reliable interface that keeps the launch carrier on track until
the OpenUAS takes off.

Once these tasks are completed, the electronics can be
mounted. Holes are cut to allow wiring and control points to
exit the body and to mount servos into place. Final assembly
and testing commences once all electronics are in place.

C. Manufacturing Lessons Learned

As the manufacturing process of the current OpenUAS
progressed, the team noticed a few difficulties that came with
the use of the carbon fiber. The process of shaping carbon
fiber in the lab was difficult and outweighed the benefits of
the materials strength and durability. One major issue was
the difficulty of preventing the material from wrinkling while
the epoxy was curing in the vacuum bag. The initial solution
was to sand the material down to form a smooth surface after
the epoxy had completely cured. This, however, resulted in
visible weak spots that were located along the edges of the
craft and on a few of the flat surfaces. Further, access to
precision tools needed to create access points and mounting
holes was an issue. With limited space for proper clamping
and a low-torque hand drill, issues arose with mounting holes
having to be redrilled due to them being angled.

Initially, the electronics bay was designed to be manufac-
tured out of fiberglass to ensure the weight of the battery
was supported. It was determined that the part needed to
be reconstructed out of a lighter material (poster board),
however, as the fiberglass was heavier than expected and
could not be easily modified once assembled. The cross
sectional strength was not as impactful as initially anticipated
as the battery did not require any extra support aside from
the corner supports that were later put into place.

After our first test flight, we discovered an issue with the
mounting of the ailerons on the wings: the hinges would pop
off the wings of the OpenUAS during transportation after a
flight. This was fixed by using epoxy to reconnect the hinges
and the ailerons to the crafts wing. For future designs of
the OpenUAS, we will include a method to incorporate a
stronger connection of the hinges and remove the need for
epoxy.

With the current design of the OpenUAS, we have focused
on the use of the launch rail for take-off instead of a hand-
launching because it gives a more reliable take-off speed
and orientation. A minor issue that was discovered with the
design of the launch rail was how unsteady the rail was
during launching. To resolve this issue we will distance the
rails further apart from each other in the future designs.

IV. ELECTRONICS AND SOFTWARE

In parallel with the external design and manufacturing
process, we focus on designing and testing the iron bird: a
completely connected collection of all electronics required

to fly the OpenUAS, all housed outside of the aircraft
for easy access. Some of the core features of the iron
bird is its customizability, ease of assembly, and seamless
implementation into the airframe. As such, the components
listed below are intended to be used as a reference, where
the end user could easily add, remove, or swap components
should they see fit.

A. Electronic Hardware

We list the currently supported electrical components in
the OpenUAS in Table IV. Some components come in
bundles and are denoted by a * or ** to indicate that they
can be purchased for less money in a bundle together. These
components are the bare minimum to implement an autopilot
into the OpenUAS and exclude options such as airspeed
sensors and LIDARs, which we still support.

Component Model Price
Flight Computer Holybro Pixhawk 4 Autopi-

lot
$170
(SKU20068)*

GPS Holybro Pixhawk 4 Neo-
M8N GPS

$170
(SKU20068)*

Power Module Holybro APM Power Mod-
ule 12S - PM02 V3

$170
(SKU20068)*

RC Transceiver FrSky X8R 8/16Ch S.Bus
ACCST Telemetry

$244.99
(SKU2153)**

Receiver W/Smart Port
RC controller FrSky Taranis X9D plus $244.99

(SKU2153)**
Telemetry Radios Holybro 433Mhz 915Mhz $39.00

Transceiver Radio Telemetry
Set

ESC BadAss Renegade 85A ESC $79.99
Motor BadAss 2826-690Kv brush-

less motor
$69.99

Propeller APC 14x12 E $9.05
Battery Ovonic 5000mAh 11.1V 3S

50C 3 Cell LiPo
$32.99

TOTAL: $613.02

TABLE IV
IRON BIRD OPENUAS COMPONENTS LIST

We selected the Pixhawk 4 for the flight computer. The
flight controller is designed to run the PX4 flight stack [17],
an open source flight software that is highly configurable,
customizable, and has built-in autonomous flight capabilities.
This was chosen over other offerings, such as ArduPilot, due
to its documentation and sustained support for the chosen
Pixhawk flight computer. An end user could decide to use
another flight computer, or none at all, if it better fits their
specifications, however.

Components including the GPS, airspeed sensor, power
module, and Telemetry Radios where chosen from a list of
recommended components off of the PX4 setup guide [18]
and interface directly with the Pixhawk 4. These components
all have plug-and-play capabilities, which allows for easy and
simple electronics setup using the ground station.

The RC transceiver connects with the supported Taranis
X9D Plus controller and also directly with the Pixhawk 4,
which minimizes setup of the RC controller, further reducing
setup complexity.

Fig. 6. Theoretical Thrust Required Curve Plotted with Theoretical Thrust
Available (left axis) and Current draw (right axis). The throttle setting on
Motocalc was lowered to 54% such that the thrust available curve, seen
in black, intersects with the thrust required curve, in blue, at the selected
cruise velocity of 45 mph. The current draw corresponding to flying at 45
mph can be seen where the cruise velocity intersects the current draw curve.
They intersect at approximately 4.4 amps

1) Motor and Propeller selection: To determine a motor
and propeller combination, and subsequently what ESC
should be used for the OpenUAS, analysis was done using
data from both CFD and MotoCalc 8 [19]. The parasitic drag
coefficient CD,0 was found using data from CFD analysis run
on the OpenUAS model and found the thrust required curve
as shown in [20, p. 212] as equation 1

Thrust = D =
1

2
ρ∞V

2
∞SrefCD0

+
2KW 2

ρ∞V 2
∞Sref

(1)

The maximum lift coefficient CLmax
was found using CFD,

and was used to compute the stall velocity using the equa-
tion 2 below [20, p. 316].

Vstall =

√
2W

ρ∞SrefCLmax

(2)

This came out to be 37 mph, however, subsequent stall
testing written about in V found this number to be around
26 mph. Using the thrust required curve, we calculated the
max range cruise velocity as the velocity at the minimum of
the thrust required curve [20], as 27 mph, which was lower
than the theoretical stall velocity. Our pilot selected a cruise
velocity of 45 mph to be sufficiently above the stall velocity
to compare current draw of motor and prop combinations.

We generated theoretical values for current draw, effi-
ciency, and thrust available at varying velocities for different
combinations of motors and propellers using MotoCalc 8.
Thrust available, Current Draw, and Efficiency where plotted
with the thrust required curve to determine the most efficient
combination of motor and prop at our selected cruise speed.

Initially, the motor and prop combination with the most
excess thrust was selected over other valid combinations
with higher efficiencies due to the higher theoretical stall
velocity. This was a BadAss 3520-970Kv and the APC

15x8E propeller. At 0 mph MotoCalc determined the max-
imum current draw to be 70 amps, and the current draw
in steady state flight at 7 amps so the BadAss Renegade
85A ESC was therefore chosen due to its 85 amp continuous
current draw and 100 amp burst current. After an initial test
flight, it was determined that the the stall velocity was much
lower than the CFD indicated, 26 mph vs 37 mph, so the
BadAss 2826-690Kv motor and the ACP 14x12E prop where
chosen as this combination only drew up to 36 amps, still
provided sufficient thrust, and was overall more efficient. In
the future we plan to re-run this analysis at values closer to
the theoretical cruise speed of 27 mph to have more accurate
current draw data available. We also plan to make this data
available in an easily accessible format such that a motor and
prop can be selected depending on the payload an OpenUAS
user has.

2) Batteries: During preliminary flight test analysis, our
main challenge was balancing the weight and max thrust of
the aircraft, notably during takeoff. We specifically selected
the battery to maintain the max thrust while decreasing
weight. First, the battery has to be able to output enough
current to sustain the system at full throttle. Batteries for
remote-controlled cars or UAS are generally able to achieve
this. Next, the battery has to have a voltage that is compatible
with the electrical system; we chose 11.1V. With these
requirements, we can select the amp-hours of the battery
to decrease the weight of the battery with the drawback
being that lower amp-hours correlate to shorter flight time. A
battery with a different value can then be selected depending
on the planned mission to allow the OpenUAS to be more
general purpose.

B. Software

We are running PX4 Autopilot [17] on the flight computer
for the OpenUAS. We choose PX4 over other software stacks
such as ArduPilot due to the well maintained documentation,
high customizability, and ongoing support for the Pixhawk
hardware. PX4 allows the OpenUAS to follow autonomous
flight paths, assist the pilot in maintaining stable flight, and
can collect and record data during tests. If the end user does
not require these capabilities, it can be optionally excluded.

1) Simulation: We are currently experimenting with com-
puter simulated flight environments. The latest version of
PX4 allows for fully simulated flights using Gazebo [21] to
simulate the world that the software interacts with. QGround-
Control [22], the ground station software that we utilize to
monitor the vehicle in flight, connects to a version of the
PX4 software running locally on a lab computer. From there,
PX4 communicates with Gazebo, also running locally on a
lab computer, to interact with the simulated world.

Our analysis includes basic flight simulations of manual
and autonomous flight modes. These simulations give us a
general idea of how the real UAS will behave without fear of
crashing and allow us to introduce variables during flight to
observe what actions the UAS will take to correct them. As
can be seen in figure 7 we are currently using a default fixed-
wing airframe, provided by the existing PX4 software, for

Fig. 7. Default PX4 plane simulated inside Gazebo [21].

Fig. 8. Work in progress vehicle model of the OpenUAS frame

the simulations. However, we plan to add our own OpenUAS
design, seen in figure 8, to the simulator to more accurately
simulate the flight of our aircraft. This system will allow us
to train new pilots and test new software features in a safe,
cost-free environment.

We also explored hardware in the loop (HITL) simulation.
QGroundControl connects to the Pixhawk hardware over
radio and the Pixhawk sends commands and receives results
from a simulated world running on a lab computer. While
this integrates the flight hardware into the testing structure,
HITL simulation is no longer supported by the PX4 software
for fixed-wing aircraft. We ultimately determined that HITL
simulation does not provide a significant advantage over
a standard full simulation composition for the amount of
additional work required due to the dropped support.

2) Custom Firmware and GitHub Repository: The Open-
UAS team also maintains a version of the PX4 firmware. This
version includes a new software airframe for the OpenUAS
vehicle, allowing us to directly program the vehicle config-
urations into the source code. The team utilizes GitHub to
keep track of the changes made and to share the custom ver-
sion with others. The GitHub 3repository is a fork from the
stable version of the PX4 software and is set to automatically
create a pull request when a new version of the stable PX4
software is released.

Additionally, the team forked the 4submodule that is
responsible for the flight simulation. The vehicle model and
its configurations are stored within this submodule. To facil-
itate autonomous integration, this submodule automatically
merges changes from the upstream source when they are
available. This workflow allows the team to keep track of its

3https://github.com/LTL-AERO/PX4-Autopilot/tree/stable
4https://github.com/LTL-AERO/PX4-SITL gazebo

modifications, while staying up to date with the latest version
of the official PX4 firmware.

Within the custom airframe, the team has configured an
output mixer specific to the OpenUAS’s structural design,
enabled an additional LIDAR sensor for altitude measure-
ments, and tuned the parameters for autonomous maneuvers
including autonomous takeoff and landing.

The end goal is to integrate the custom airframe into the
official version of PX4 or to provide a pre-compiled version
of the custom firmware for others to easily load onto the
Pixhawk flight computer when building the OpenUAS.

V. FLIGHT TEST AND EVALUATION

A. Flight Procedures

We created test procedure documents for both ground and
flight tests to specify the objectives, success criteria, supplies,
and procedures for a successful test in addition to serving as
a place to record data and lessons learned. These documents
allow the team to write out a detailed plan for each test before
it occurs to make sure no details are overlooked when the
test is being performed. An electronics preflight checks and
arming procedures document was also created to specify the
specific procedures to follow to correctly calibrate and arm
the iron bird and ensure the OpenUAS is ready for flight.

B. Test Flights

Fig. 9. OpenUAS Group members (left to right) Glick, Edgren, Burken,
Levandowski, and Johannsen at Flight Test Range

The first flight of the OpenUAS occurred on November
22nd, 2020 at the Central Iowa Aeromodelers flying field
southeast of Ames, Iowa; see Figure 9. Weather conditions
at the time were unlimited visibility and clear skies, and the
wind was out of the west at a gusty 7-10 mph.

A hand launch technique was employed for the takeoff
since landing gear had not yet been incorporated into the
OpenUAS design and the launch rail was found to be too
unstable to properly launch the OpenUAS. A team member
held the OpenUAS above their head while the motor was
ran up to full power. The team member ran forward with
the OpenUAS and a slight forward push as he let go of
it was sufficient for the OpenUAS to quickly gain flying
airspeed with little to no dip in flight path after release.

https://github.com/LTL-AERO/PX4-Autopilot/tree/stable
https://github.com/LTL-AERO/PX4-SITL_gazebo

Fig. 10. OpenUAS climbing to cruise altitude shortly after hand-launch
10 ft off the Ground

With the motor and prop combination optimized for thrust
the OpenUAS climbed very well, see Figure 10, and was
quickly at a comfortable cruise flight altitude.

Once in the air, the OpenUAS was not as stable as
desired and demonstrated nearly neutral static stability about
its lateral and longitudinal axis. However, this is no less
stable than many aerobatic radio-controlled aircraft so the
OpenUAS was still well within a reasonable margin of
stability and safety. The OpenUAS also tended to hunt left
and right in yaw and constantly required small aileron and
elevator inputs to keep it on a straight flight path. The amount
that these characteristics were affected or caused by the wind
conditions during the test flight is currently undetermined and
will be explored in future test flights with more ideal winds.
The half-span ailerons on the OpenUAS were extremely
effective, as was the elevator. The rudder was not as effective
as desired but could still create small yawing moments.

The OpenUAS cruised comfortably at seventy-five percent
power. Engaging Stabilize mode on the Pixhawk 4 effectively
eliminated the stability problems and made the OpenUAS
almost as easy to fly as an E-flite Apprentice radio-controlled
student trainer aircraft [6].

Two subsequent flights of the OpenUAS have tested the
addition of landing gear, a larger rudder, and a different
wing design. The landing gear allowed the OpenUAS to
takeoff and land from both hard surface and well-cut grass
runways and caused no adverse flight characteristics. The
larger rudder allowed more yaw control at slower speeds and
improved spin recoverability. The wing design had identical
dimensions to the original wing, but had a NACA 23012
airfoil and was made out of XPS foam coated in a thin
layer of epoxy. Flight with this wing caused no noticeable
differences in flight characteristics, however the wing flexed
considerably in flight, leading to the conclusion that its
manufacturing method was not ideal.

Test flights of the OpenUAS have also focused on de-
termining a stall speed and average cruise speed based on

ground speed and airspeed data measured from a pitot tube.
The PX4 also computes a windspeed estimate as well as fac-
tors compressibility effects to calculate a true airspeed, which
is recorded into the flight logs. Stall tests were performed in
Position Mode, which maintains the heading and altitude of
the craft, while the throttle of the craft was decreased until
a stall was noticed. In the data, we looked for a drop in
altitude in while the craft was in position mode and read the
corresponding true airspeed reading. These tests determined
the stall speed of the OpenUAS to be approximately 12 m/s
and the average cruise speed 23 m/s.

Initial test flights of the OpenUAS have proved the design
to be airworthy and structurally sound, and initial modifica-
tions have already improved the design. Further test flights
and data analysis will supply additional information on the
OpenUAS, which will enable the team to make stability
improvements and other refinements for OpenUAS 2.0.

C. Application of Runtime Verification on the OpenUAS
The OpenUAS is both a real-time and safety-critical

system i.e., it does not have a high tolerance to a certain class
of failures. Even with extensive design-time verification, we
need to add runtime verification (verification performed in
real time, during the flight) to meet our safety goals. We
experimented with the Realizable, Responsive, Unobtrusive
Unit (R2U2) [23], [24], a temporal logic-based runtime ver-
ification engine designed to embed on-board safety-critical
systems to assess the health of the system according to our
user-developed requirements.

To start, we set up R2U2 to reason over a small set of
log files generated by PX4. This reasoning setup constitutes
R2U2’s “offline mode,” where we prototype the setup over
a trace file of logged data versus in “online mode” where
data is fed into R2U2 running on-board the OpenUAS in
real time. In the future, the team seeks to install R2U2 onto
a Raspberry Pi or other companion computer and interface
with the Pixhawk directly so that the data can be analyzed in
real time and R2U2 can potentially send commands to the
Pixhawk in response to any off-nominal events that R2U2
detects.

1) R2U2: R2U2 takes two inputs: a discrete stream/trace
of data (e.g., sensor data) and a set of specifications for-
mulated in Mission-time Linear Temporal Logic (MLTL) V-
C.2. The tool uses novel algorithms [25] to check that the
specifications are satisfied with respect to the input data and
reports whether each specification has been satisfied in each
time step in real time.

2) Developed Requirements: We developed a small set
of formal requirements to reason over the available sensor
data by informally writing requirements in English and then
translating them into MLTL. To illustrate the work done
so far, we focus on a single requirement inspired by a
specification from a previous study [26], [27] and analyze
the generated results based on the data captured during flight
of the OpenUAS. In English, this requirement is:

”Once the UAS takes off, it should obtain an altitude of
300 meters within 15 seconds.”

Fig. 11. Logged altitude and “landed” Boolean variable data

Mission-time Linear Temporal Logic (MLTL) [26],
[28], [29], [30]:
? finite set of atomic propositions {p q}
? Boolean connectives: ¬, ∧, ∨, and →
? temporal connectives with interval time bounds:

Symbol Operator Timeline

�[2,6]p ALWAYS[2,6] 0 1 2 3 4 5 6 7 8
p p p p p

♦[0,7]p EVENTUALLY[0,7] 0 1 2 3 4 5 6 7 8
p

pU[1,5]q UNTIL[1,5] 0 1 2 3 4 5 6 7 8
p p q

pR[3,8]q RELEASE[3,8]
p,q

0 1 2 3 4 5 6 7 8
qqq

There are three pieces of data we must have in order to
check this requirement: takeoff status, altitude, and time. To
keep track of the status of takeoff, we use logged “landed”
Boolean calculated in the PX4 source code and approximate
takeoff as when the value has changed from ”1” to ”0”. For
altitude we used GPS altitude since it is the most accurate
method of all the on-board altitude sensors. Finally for time
we used the associated timestamps with each data point. This
logged data can be seen in 11.

The next step comes in formalizing this requirement in
MLTL. We define takeoff as the state when the UAS is
landed and in the next state the UAS is not landed.
Formalizing this to MLTL we get:

landed ∧�[1,1](¬landed) (3)

As for the altitude section of our requirement, we say that the
UAS must be at an altitude of 300 meters within 15 seconds.
In MLTL:

♦0,15alt > 300 (4)

The relationship between these two formulas can be ex-
pressed as a logical implication, or an ”if then” statement.
So our full specification can be described as:

(landed ∧�[1,1](¬landed)) → (♦0,15alt > 300) (5)

Once we feed the data and outlined specifications into R2U2
we will get a single trace describing whether the specification
was met at each timestep. We can plot traces for each

Fig. 12. Output generated by R2U2 based on data in Figure 11 for
respective subformulas: 3, 4, 5. The outputs are boolean values with ’1’
and ’0’ corresponding to the specification being satisfied and unsatisfied
respectively.

Fig. 13. Output generated by R2U2 based on data in Figure 11 for
respective subformulas: 3, altered 4, 6. The outputs are boolean values with
’1’ and ’0’ corresponding to the specification being satisfied and unsatisfied
respectively.
subformula as well as the overall formula for clarity in 12
and we will notice that for the time of interest (when we take
off), the value of our specification is always ’1,’ meaning the
OpenUAS behaved exactly as we expected.

As an exercise, we can change our specification such that
we require an altitude of 300 meters within 10 seconds of
takeoff. So our new overall specification will be:

(landed ∧�[1,1](¬landed)) → (♦0,10alt > 300) (6)

Showing these graphs in figure 13, we see that the specifica-
tion fails since we do not reach our desired altitude within 10
seconds of takeoff, and so the output of our new specification
is ’0’ for the state when we takeoff, designating a failure to
meet our stated requirement.

In future OpenUAS flights, we intend to connect the
output verdicts of R2U2 to mitigation triggers, e.g., to help
automatically cushion an unplanned landing instead of the
pilot needing to observe an unrecoverable spin, and manually
apply the opposite aileron to the direction of spin. Runtime
verification specification patterns collected from previous
case studies [31] will guide our requirements elicitation
effort.

VI. CONCLUSION AND FUTURE WORK
We have created, documented, and completed initial flight

demonstrations for the first totally open-source (in both soft-

ware and hardware), easily manufacturable, small, inexpen-
sive, reconfigurable, fixed-wing UAS. Our initial designs are
currently available for public use, now enabling users from
researchers to students to conduct repeated flight experiments
with varying payloads on an easy-to-repair testbed. As we
add more polished documentation, user scenario guides, and
trade-off analysis, fixed-wing UAS experiments will become
increasingly accessible.

Our immediate next steps include improving take-off and
landing to make both smoother sequences with less variance
and lower probability of any damage to the aircraft, as well
as improving aspects of aircraft control. In the future, in
addition to aiming for general improvements to the design,
we intend to create multiple versions of the OpenUAS fo-
cusing on different user needs. For example, one version will
be the cheapest, easiest-to-manufacture version optimized for
maximum accessibility to a wide range of student clubs, high
schools, and hobbyists. Another version will optimize for
maximum reconfigurability for different sized batteries, on-
board sensors, and flight computers, to enable experiments
with a broad range of autonomous capabilities. We plan to
experiment with both smaller, catapult-launched and larger,
runway-launched versions to enable different payloads for
a broad range of experiments. After we create a core set
of standard OpenUAS variant designs, we will focus on
specializing the platform for supporting specific experiments
in the Laboratory for Temporal Logic, such as gathering
data from runtime verification of hybrid-UAS swarms and
advanced algorithms for autonomous operations.

Our ultimate goal is to have a well-organized, well-
documented github repository with various versions of the
OpenUAS, each optimized for a different audience. As
each design choice will be accompanied by documentation
describing how it was made and what effect slight changes
would have, users will be able to start with one OpenUAS
version and further specialize the open design to their needs.
This also means that if any specific COTS part is not avail-
able, it will be easy to figure out which other part(s) can be
suitably substituted and if any other changes need to be made
to other parts of the aircraft to accommodate the substitution.
The OpenUAS project aims to make fixed-wing UAS flight
testing more accessible (in terms of understanding, cost, and
physical access) to broad audiences going forward.

REFERENCES

[1] E. Denney and G. Pai, “Data Artifacts for Airworthiness of
the Swift UAS,” https://ti.arc.nasa.gov/publications/5660/download/,
2012, NASA Ames Research Center.

[2] J. Geist, K. Y. Rozier, and J. Schumann, “Runtime Observer Pairs
and Bayesian Network Reasoners On-board FPGAs: Flight-Certifiable
System Health Management for Embedded Systems,” in Runtime
Verification (RV14), vol. 8734. Springer-Verlag, 2014, pp. 215–230.

[3] K. Y. Rozier, J. Schumann, and C. Ippolito, “Intelligent Hardware-
Enabled Sensor and Software Safety and Health Management for
Autonomous UAS,” NASA, NASA Ames Research Center, Moffett
Field, CA 94035, USA, Technical Memorandum NASA/TM-2015-
218817, May 2015.

[4] S. N. Air and S. Museum, “AeroVironment RQ-14A Dragon
Eye,” Online: https://airandspace.si.edu/collection-objects/
aerovironment-rq-14a-dragon-eye/nasm A20070211000, 2003.

[5] N. C. Administrator, “NASA Flies Dragon Eye Unmanned Air-
craft Into Volcanic Plume,” Online: https://www.nasa.gov/topics/earth/
earthmonth/volcanic-plume-uavs.html, 2013, NASA Ames Research
Center.

[6] E-flite, “Apprentice STS 1.5m RTF Smart Trainer with SAFE,”
Online: https://www.horizonhobby.com/product/apprentice-sts-1.
5m-rtf-smart-trainer-with-safe/EFL3700.html, 2020, EFL3700.

[7] Applied Aeronautics, “Albatross,” Online: https://www.
appliedaeronautics.com/albatross-uav, 2014.

[8] E-flite, “E-flite RC Product/Services,” Online: https://www.facebook.
com/EfliteRC/, 2021.

[9] J. Spitzer, “3DLabPrint,” Online: https://3dlabprint.com/, 2021.
[10] M. Selig, “Uiuc airfoil coordinates database,” Online: https://m-selig.

ae.illinois.edu/ads/coord database.html.
[11] A. Deperrois, “XFLR5.” [Online]. Available: http://www.xflr5.tech/

xflr5.htm
[12] N. K. Hieu and H. T. Loc, “Airfoil selection for fixed wing of

small unmanned aerial vehicles,” in AETA 2015: Recent Advances
in Electrical Engineering and Related Sciences. Cham: Springer
International Publishing, 2016, pp. 881–890.

[13] A. Gries, “Airfoil selection - iteration 2,” Online: http://temporallogic.
org/research/ICUAS21/docs/airfoilselection iteration2.pdf, January
2020.

[14] ——, “Tail sizing,” Online: http://temporallogic.org/research/
ICUAS21/docs/tailsizing.pdf, September 2018.

[15] M. Drela and H. Youngren, “AVL.” [Online]. Available: http:
//web.mit.edu/drela/Public/web/avl/

[16] S. D. I. Software, “Star CCM+.” [Online]. Avail-
able: https://www.plm.automation.siemens.com/global/en/products/
simcenter/STAR-CCM.html

[17] I. Dronecode Project, “PX4 autopilot.” [Online]. Available: https:
//px4.io/

[18] ——, “PX4 user guide.” [Online]. Available: https://docs.px4.io/
master/en/

[19] I. Capable Computing, “Motocalc.” [Online]. Available: http:
//www.motocalc.com/

[20] J. Anderson, Aircraft Performance & Design, ser. McGraw-Hill
international editions. McGraw-Hill Education, 1999. [Online].
Available: https://books.google.com/books?id=PwtO7aiwbBwC

[21] O. S. R. Foundation, “Gazebo.” [Online]. Available: http://gazebosim.
org/

[22] I. Dronecode Project, “QGroundControl.” [Online]. Available: http:
//qgroundcontrol.com/

[23] K. Y. Rozier and J. Schumann, “R2U2: Tool Overview,” in Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardi-
sation for Runtime Verification Tools (RV-CUBES), vol. 3. Seattle,
WA, USA: Kalpa Publications, September 2017, pp. 138–156.

[24] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “Runtime Analysis
with R2U2: A Tool Exhibition Report,” in Runtime Verification.
Madrid, Spain: Springer-Verlag, September 2016.

[25] B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier,
“Embedding Online Runtime Verification for Fault Disambiguation
on Robonaut2,” in Formal Modeling and Analysis of Timed Systems
(FORMATS). Springer, September 2020, pp. 196–214.

[26] T. Reinbacher, K. Y. Rozier, and J. Schumann, “Temporal-logic based
runtime observer pairs for system health management of real-time
systems,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 8413. Springer-Verlag, April
2014, pp. 357–372.

[27] J. Schumann, P. Moosbrugger, and K. Y. Rozier, “R2U2: Monitoring
and Diagnosis of Security Threats for Unmanned Aerial Systems,”
in Conference on Runtime Verification (RV15). Vienna, Austria:
Springer-Verlag, September 2015.

[28] J. Li and K. Y. Rozier, “MLTL Benchmark Generation via Formula
Progression,” in Runtime Verification. Limassol, Cyprus: Springer-
Verlag, November 2018.

[29] “2019 Runtime Verification Benchmark Competition,” https://www.
rv-competition.org/.

[30] J. Li, M. Y. Vardi, and K. Y. Rozier, “Satisfiability checking for
Mission-time LTL,” in Computer Aided Verification (CAV), ser. LNCS,
vol. 11562. New York, NY, USA: Springer, July 2019, pp. 3–22.

[31] K. Y. Rozier, “Specification: The biggest bottleneck in formal methods
and autonomy,” in Verified Software: Theories, Tools, and Experiments
(VSTTE), ser. LNCS, vol. 9971. Toronto, ON, Canada: Springer-
Verlag, July 2016, pp. 1–19.

https://ti.arc.nasa.gov/publications/5660/download/
https://airandspace.si.edu/collection-objects/aerovironment-rq-14a-dragon-eye/nasm_A20070211000
https://airandspace.si.edu/collection-objects/aerovironment-rq-14a-dragon-eye/nasm_A20070211000
https://www.nasa.gov/topics/earth/earthmonth/volcanic-plume-uavs.html
https://www.nasa.gov/topics/earth/earthmonth/volcanic-plume-uavs.html
https://www.horizonhobby.com/product/apprentice-sts-1.5m-rtf-smart-trainer-with-safe/EFL3700.html
https://www.horizonhobby.com/product/apprentice-sts-1.5m-rtf-smart-trainer-with-safe/EFL3700.html
https://www.appliedaeronautics.com/albatross-uav
https://www.appliedaeronautics.com/albatross-uav
https://www.facebook.com/EfliteRC/
https://www.facebook.com/EfliteRC/
https://3dlabprint.com/
https://m-selig.ae.illinois.edu/ads/coord_database.html
https://m-selig.ae.illinois.edu/ads/coord_database.html
http://www.xflr5.tech/xflr5.htm
http://www.xflr5.tech/xflr5.htm
http://temporallogic.org/research/ICUAS21/docs/airfoilselection_iteration2.pdf
http://temporallogic.org/research/ICUAS21/docs/airfoilselection_iteration2.pdf
http://temporallogic.org/research/ICUAS21/docs/tailsizing.pdf
http://temporallogic.org/research/ICUAS21/docs/tailsizing.pdf
http://web.mit.edu/drela/Public/web/avl/
http://web.mit.edu/drela/Public/web/avl/
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
https://px4.io/
https://px4.io/
https://docs.px4.io/master/en/
https://docs.px4.io/master/en/
http://www.motocalc.com/
http://www.motocalc.com/
https://books.google.com/books?id=PwtO7aiwbBwC
http://gazebosim.org/
http://gazebosim.org/
http://qgroundcontrol.com/
http://qgroundcontrol.com/
https://www.rv-competition.org/
https://www.rv-competition.org/

	INTRODUCTION
	DESIGN
	CAD Modeling
	Wings and Airfoil Selection
	Vertical and Horizontal Tails

	Stabilty Analysis
	CFD Analysis
	Additional Design Work
	Landing Gear
	Material Considerations

	MANUFACTURING
	Material Choices
	Manufacturing Process
	Manufacturing Lessons Learned

	ELECTRONICS AND SOFTWARE
	Electronic Hardware
	Motor and Propeller selection
	Batteries

	Software
	Simulation
	Custom Firmware and GitHub Repository

	FLIGHT TEST AND EVALUATION
	Flight Procedures
	Test Flights
	Application of Runtime Verification on the OpenUAS
	R2U2
	Developed Requirements

	CONCLUSION AND FUTURE WORK
	References

