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Abstract

Mission-time LTL (MLTL) is a bounded variant of MTL over naturals designed to

generically specify requirements for mission-based system operation common to air-

craft, spacecraft, vehicles, and robots. Despite the utility of MLTL as a specification

logic, major gaps remain in analyzing MLTL, e.g., for specification debugging or model

checking, centering on the absence of any complete MLTL satisfiability checker. In this

paper, we explore both the theoretical and algorithmic problems of MLTL satisfiability

checking. We prove that the MLTL satisfiability checking problem is NEXPTIME-

complete and that satisfiability checking MLTL0, the variant of MLTL where all inter-

vals start at 0, is PSPACE-complete. To explore the best algorithmic solution for MLTL

satisifiability checking, we reduce this problem to LTL satisfiability checking, LTLf

satisfiability checking, and model checking respectively, thus conducting transitions

for MLTL-to-LTL, MLTL-to-LTLf , and MLTL-to-SMV. Moreover, we propose a new

SMT-based solution for MLTL satisfiability checking and create a transition for MLTL-

to-SMT. Our extensive experimental evaluation shows that while the MLTL-to-SMV

transition with NuXmv model checker performs best on the benchmarks whose inter-

1Part of this work was finished at Iowa State University.
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val ranges are small (than 100), the MLTL-to-SMT transition with the Z3 SMT solver

offers the most scalable performance.

Keywords: LTL over finite traces, Satisfiability Checking, SAT-based satisfiability

checking, Conflict-Driven satisfiability checking

1. Introduction

Mission-time LTL (MLTL) [1] has the syntax of Linear Temporal Logic with the

option of integer bounds on the temporal operators. It was created as a generalization

of the variations [2, 3, 4] on finitely-bounded linear temporal logic, ideal for speci-

fication of missions carried out by aircraft, spacecraft, rovers, and other vehicular or5

robotic systems. MLTL provides the readability of LTL [5], while assuming, when

a different duration is not specified, that all requirements must be upheld during the

(a priori known) length of a given mission, such as during the half-hour battery life

of an Unmanned Aerial System (UAS). Using integer bounds instead of real-number

or real-time bounds leads to more generic specifications that are adaptable to model10

checking at different levels of abstraction, or runtime monitoring on different plat-

forms (e.g., in software vs in hardware). Integer bounds should be read as generic time

units, referring to the basic temporal resolution of the system, which can generically

be resolved to units such as clock ticks or seconds depending on the mission. Integer

bounds also allow generic specification with respect to different granularities of time,15

e.g., to allow easy updates to model-checking models, and re-usable specifications for

the same requirements on different embedded systems that may have different resource

limits for storing runtime monitors. MLTL has been used in many industrial case stud-

ies [1, 6, 7, 8, 9, 10, 11], and was the official logic of the 2018 Runtime Verification

Benchmark Competition [12]. Many specifications from other case studies, in log-20

ics such as MTL [2] and STL [3], can be represented in MLTL. We intuitively relate

MLTL to LTL and MTL-over-naturals as follows: (1) MLTL formulas are LTL formulas

with bounded intervals over temporal operators, and interpreted over finite traces. (2)

MLTL formulas are MTL-over-naturals formulas without any unbounded intervals, and

interpreted over finite traces.25
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Despite the practical utility of MLTL, no model checker currently accepts this logic

as a specification language. The model checker nuXmv encodes a related logic for

use in symbolic model checking, where the □ and ♢ operators of an LTLSPEC can

have integer bounds [13], though bounds cannot be placed on the U or V (the Release

operator of nuXmv) operators.30

We also critically need an MLTL satisfiability checker to enable specification de-

bugging. Specification is a major bottleneck to the formal verification of mission-

based, especially autonomous, systems [14], with a key part of the problem being the

availability of good tools for specification debugging. Satisfiability checking is an in-

tegral tool for specification debugging: [15, 16] argued that for every requirement φ35

we need to check φ and ¬φ for satisfiability; we also need to check the conjunction of

all requirements to ensure that they can all be true of the same system at the same time.

Specification debugging is essential to model checking [16, 17, 18] because a positive

answer may not mean there is no bug and a negative answer may not mean there is a bug

if the specification is valid/unsatisfiable, respectively. Specification debugging is criti-40

cal for synthesis and runtime verification (RV) since in these cases there is no model;

synthesis and RV are both entirely dependent on the specification. For synthesis, sat-

isfiability checking is the best-available specification-debugging technique, since other

techniques, such as vacuity checking (cf. [19, 20]) reference a model in addition to the

specification. While there are artifacts one can use in RV, specification debugging is45

still limited outside of satisfiability checking yet central to correct analysis. A false pos-

itive due to RV of an incorrect specification can have disastrous consequences, such as

triggering an abort of an (otherwise successful) mission to Mars. Arguably, the biggest

challenge to creating an RV algorithm or tool is the dearth of benchmarks for check-

ing correctness or comparatively analyzing these [21], where a benchmark consists of50

some runtime trace, a temporal logic formula reasoning about that trace, and some ver-

dict designating whether the trace at a given time satisfies the requirement formula. A

MLTL satisfiability solver is useful for RV benchmark generation [22].

Despite the critical need for an MLTL satisfiability solver, no such tool currently

exists. To the best of our knowledge, there is only one available solver (zot [23])55

for checking the satisfiability of MTL-over-naturals formulas, interpreted over infinite
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traces. Since MLTL formulas are interpreted over finite traces and there is no trivial

reduction from one to another, zot cannot be directly applied to MLTL satisfiability

checking.

Our approach is inspired by satisfiability-checking algorithms from other logics.60

For LTL satisfiability solving, we observe that there are multiple efficient translations

from LTL satisfiability to model checking, using nuXmv [17]; we therefore consider

here translations to nuXmv model checking, both indirectly (as a translation to LTL),

and directly using the new KLIVE [24] back-end and the BMC back-end, taking ad-

vantage of the bounded nature of MLTL. The bounded nature of MLTL enables us to65

also consider a direct encoding at the word-level, suitable as input to an SMT solver.

Our contribution is both theoretic and experimental. We first consider the complex-

ity of such translations. We prove that the MLTL satisfiability checking problem is

NEXPTIME-complete and that satisfiability checking MLTL0, the variant of MLTL

where all intervals start at 0, is PSPACE-complete. Secondly, we introduce translation70

algorithms for MLTL-to-LTLf (LTL over finite traces [4]), MLTL-to-LTL, MLTL-to-

SMV, and MLTL-to-SMT, thus creating four options for MLTL satisfiability checking.

Our results show that the MLTL-to-SMT transition with the Z3 SMT solver offers the

most scalable performance, though the MLTL-to-SMV translation with an SMV model

checker can offer the best performance when the intervals in the MLTL formulas are75

restricted to small ranges less than 100.

In addition to including all missing proofs, this paper extends the conference ver-

sion [25] by introducing more details of the MLTL-to-SMT transition, e.g., examplize

the encoding and propose different SMT encodings for MLTL satisfiability checking,

and showing more experimental results to strenthen our previous conclusion as well as80

to evaluate the performance of different SMT encodings.

2. Preliminaries

A (closed) interval over naturals I = [a, b] (0 ≤ a ≤ b are natural numbers) is a set

of naturals {i | a ≤ i ≤ b}. I is called bounded iff b < +∞; otherwise I is unbounded.

MLTL is defined using bounded intervals. Unlike Metric Temporal Logic (MTL) [26],85
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it is not necessary to introduce open or half-open intervals over the natural domain, as

every open or half-open bounded interval is reducible to an equivalent closed bounded

interval, e.g., (1,2) = ∅, (1,3) = [2,2], (1,3] = [2,3], etc. Let AP be a set of atomic

propositions, then the syntax of a formula in MLTL is

φ ::= true | false | p | ¬φ | φ ∧ ψ | φ ∨ ψ | □φ | ♢φ | φ UI ψ | φRIψ90

where I is a bounded interval, p ∈ AP is an atom, and φ and ψ are subformulas.

Given two MLTL formulas φ,ψ, we denote φ = ψ iff they are syntactically equiv-

alent, and φ ≡ ψ iff they are semantically equivalent, i.e., π |= φ iff π |= ψ for a

finite trace π. In MLTL semantics, we define false ≡ ¬true, φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),

¬(φ UI ψ) ≡ (¬φRI¬ψ) and ¬♢Iφ ≡ □I¬φ. MLTL keeps the standard operator95

equivalences from LTL, including (♢Iφ) ≡ (true UIφ), (□Iφ) ≡ (false RI φ), and

(φ RI ψ) ≡ (¬(¬φ UI ¬ψ)). Notably, MLTL discards the neXt (X ) operator, which

is essential in LTL [5], since Xφ is semantically equivalent to □[1,1]φ.

The semantics of MLTL formulas is interpreted over finite traces bounded by base-

10 (decimal) intervals. Let π be a finite trace in which every position π[i] (i ≥ 0) is100

over 2AP , and |π| denotes the length of π (|π| < +∞ when π is a finite trace). We

use πi (|π| > i ≥ 0) to represent the suffix of π starting from position i (including i).

Let a, b ∈ I, a ≤ b; we define that π models (satisfies) an MLTL formula φ, denoted as

π |= φ, as follows:

• π |= p iff p ∈ π[0];105

• π |= ¬φ iff π ̸|= φ;

• π |= φ ∧ ψ iff π |= φ and π |= ψ;

• π |= φ U[a,b] ψ iff |π| > a and, there exists i ∈ [a, b], i < |π| such that πi |= ψ

and for every j ∈ [a, b], j < i it holds that πj |= φ;

Compared to the traditional MTL-over-naturals2 [27], the Until formula in MLTL is110

interpreted in a slightly different way. In MTL-over-naturals, the satisfaction of φ UI ψ

2In this paper, MTL-over-naturals is interpreted over finite traces.
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requires φ to hold from position 0 to the position where ψ holds (in I), while in MLTL

φ is only required to hold within the interval I , before the time ψ holds. From the

perspective of writing specifications, cf. [1, 8], this adjustment is more user-friendly.

It is not hard to see that MLTL is as expressive as the standard MTL-over-naturals: the115

formula φ U[a,b] ψ in MTL-over-naturals can be represented as (□[0,a−1]φ) ∧ (φ

U[a,b] ψ) in MLTL; φ U[a,b] ψ in MLTL can be represented as ♢[a,a](φ U[0,b−a] ψ) in

MTL-over-naturals.

We say an MLTL formula is in BNF if the formula contains only ¬, ∧ and UI oper-

ators. It is trivial to see that every MLTL formula can be converted to its (semantically)120

equivalent BNF with a linear cost. Consider φ = (¬a)∨ ((¬b)RI(¬c)) as an example.

Its BNF form is ¬(a∧ (b UI c)). Without explicit clarification, this paper assumes that

every MLTL formula is in BNF.

The closure of an MLTL formula φ, denoted as cl(φ), is a set of formulas such that:

1) φ ∈ cl(φ); 2) φ ∈ cl(φ) if ¬φ ∈ cl(φ); 3) φ,ψ ∈ cl(φ) if φ op ψ ∈ cl(φ), where125

op can be ∧ or UI . Let |cl(φ)| be the size of cl(φ). Since the definition of cl(φ) ignores

the intervals in φ, |cl(φ)| is linear in the number of operators in φ. We also define the

closure(*) of an MLTL formula φ, denoted cl∗(φ), as the set of formulas such that: 1)

cl(φ) ⊆ cl∗(φ); 2) if φ U[a,b] ψ ∈ cl∗(φ) for 0 < a ≤ b, then φ U[a−1,b−1] ψ is in

cl∗(φ); 3) if φ U[0,b] ψ ∈ cl∗(φ) for 0 < b, then φ U[0,b−1] ψ is in cl∗(φ). Let |cl∗(φ)|130

be the size of cl∗(φ) and K be the maximal natural number in the intervals of φ. It is

not hard to see that |cl∗(φ)| is at most K · |cl(φ)|.

We also consider a fragment of MLTL, namely MLTL0, which is more frequently

used in practice, cf. [6, 1]. Informally speaking, MLTL0 formulas are MLTL formulas

in which all intervals start from 0. For example, ♢[0,4]a ∧ (a U[0,1] b) is a MLTL0135

formula, while ♢[2,4]a is not.

Given an MLTL formula φ, the satisfiability problem asks whether there is a finite

trace π such that π |= φ holds. To solve this problem, we can reduce it to the satis-

fiability problem of the related logics LTL and LTLf (LTL over finite traces [4]), and

leverage the off-the-shelf satisfiability checking solvers for these well-explored logics.140

We abbreviate MLTL, LTL, and LTLf satisfiability checking as MLTL-SAT, LTL-SAT,

and LTLf -SAT respectively.
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Linear Temporal Logic over finite traces. We assume readers are familiar with LTL

(over infinite traces) [5]. Linear Temporal Logic over finite traces, short for LTLf [4],

is a variant of LTL that has the same syntax, except that for LTLf , the dual operator of145

X is N (weak Next), which differs X in the last state of the finite trace. In the last state

of a finite trace, Xψ can never be satisfied, while Nψ is satisfiable. Given an LTLf

formula φ, there is an LTL formula ψ such that φ is satisfiable iff ψ is satisfiable. In

detail, ψ = ♢Tail∧t(φ) where Tail is a new atom identifying the end of the satisfying

trace and t(φ) is constructed as follows:150

• t(p) = p where p is an atom;

• t(¬ψ) = ¬t(ψ);

• t(Xψ) = ¬Tail ∧ X t(ψ);

• t(ψ1 ∧ ψ2) = t(ψ1) ∧ t(ψ2);

• t(ψ1Uψ2) = t(¬Tail ∧ ψ1)Ut(ψ2).155

In the above reduction, φ is in BNF. Since the reduction is linear in the size of the

original LTLf formula and LTL-SAT is PSPACE-complete [28], LTLf -SAT is also a

PSPACE-complete problem [4].

3. Complexity of MLTL-SAT

It is known that the complexity of MITL (Metric Interval Temporal Logic) satis-160

fiability is EXPSPACE-complete, and the satisfiability complexity of the fragment of

MITL named MITL0,∞ is PSPACE-complete [29]. MLTL (resp. MLTL0) can be viewed

as a variant of MITL (resp. MITL0,∞) that is interpreted over the naturals. We show

that MLTL satisfiability checking is NEXPTIME-complete, via a reduction from MLTL

to LTLf .165

Lemma 1. Let φ be an MLTL formula, andK be the maximal natural appearing in the

intervals of φ (K is set to 1 if there are no intervals in φ). There is an LTLf formula θ

that recognizes the same language as φ. Moreover, the size of θ is in O(K · |cl(φ)|).
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Proof. For an MLTL formula φ, we define the LTLf formula f(φ) recursively as fol-

lows:170

• If φ = true, false, or an atom p, f(φ) = φ;

• If φ = ¬ψ, f(φ) = ¬f(ψ);

• If φ = ξ ∧ ψ, f(φ) = f(ξ) ∧ f(ψ);

• If φ = ξ U[a,b] ψ,

f(φ) =


X (f(ξ U[a−1,b−1] ψ)), if 0 < a ≤ b;

f(ψ) ∨ (f(ξ) ∧ X (f(ξU[a,b−1]ψ))), if a = 0 and 0 < b;

f(ψ), if a = 0 and b = 0;

X represents the neXt operator in LTLf . Based on the above translation, the size of

f(φ) is at most linear to K · |cl(φ)|, i.e., in O(K · |cl(φ)|). Now we prove by induction175

over the type of φ that π |= φ iff π |= f(φ) for a finite trace π, i.e. φ and f(φ) accept

the same language. Obviously, π |= φ iff π |= f(φ) holds when φ is true, false or an

atom p. Inductively,

• if φ = ¬ψ, f(φ) = ¬f(ψ). According to the assumption hypothesis, π |= ψ iff

ψ |= f(ψ) holds for some finite trace π. As a result, π ̸|= ψ iff π ̸|= f(ψ) holds,180

which is equivalent to say π |= ¬ψ iff π |= f(φ) holds;

• if φ = ξ ∧ ψ, f(φ) = f(ξ) ∧ f(ψ). According to the assumption hypothesis,

π1 |= ξ iff π1 |= f(ξ) and π2 |= ψ iff π2 |= f(ψ) hold for two finite traces π1 and

π2. As a result, for a finite trace π, it is true that π |= ξ ∧ ψ iff π |= f(ξ)∧ f(ψ)

holds, which is equivalent to say π |= ξ ∧ ψ iff π |= f(ξ) ∧ f(ψ);185

• if φ = ξ U[a,b] ψ,

– when 0 < a ≤ b, f(φ) is X (f(ξ U[a−1,b−1] ψ)). Based on the assump-

tion hypothesis, π′ |= ξ U[a−1,b−1] ψ iff π′ |= f(ξ U[a−1,b−1] ψ) holds

for a finite trace π′. Then according to the semantics of the X opera-

tor and the MLTL formulas, we have that φ is semantically equivalent to190
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X (ξ U[a−1,b−1] ψ). As a result, π |= φ iff π |= X (f(ξ U[a−1,b−1] ψ)) for

every π = ω · π′ (ω ∈ 2Σφ );

– when 0 = a < b, f(φ) is f(ψ) ∨ (f(ξ) ∧ X (f(ξ U[a,b−1] ψ))). According

to the semantics of the X operator and the MLTL formulas, we have that

φ is semantically equivalent to ψ ∨ (ξ ∧ X (ξ U[a,b−1] ψ)). Thus for some195

finite trace π, π |= φ holds iff π |= ψ or π |= ξ ∧ X (ξ U[a,b−1] ψ) holds.

From the assumption hypothesis, we have that π |= ψ iff π |= f(ψ) holds,

or π |= ξ∧X (ξ U[a,b−1] ψ) iff π |= f(ξ)∧X (f(ξ U[a,b−1] ψ)) holds. That

means, π |= φ iff π |= f(ψ) or π |= f(ξ) ∧ X (f(ξ U[a,b−1] ψ)) holds;

– when 0 = a = b, f(φ) = f(ψ). Based on the assumption hypothesis,200

π |= ψ iff π |= f(ψ) for some finite trace π. Also, according to the MLTL

semantics, φ is semantically equivalent to ψ. As a result, we have that

π |= φ iff π |= f(ψ) holds, which means π |= φ iff π |= f(φ) holds.

Let θ = f(φ) and we can conclude that θ and φ accepts the same language, and the

size of θ is in O(K · |cl(φ)|).205

We use the construction shown in Lemma 1 to explore several useful properties of

MLTL. For instance, the LTLf formula translated from an MLTL formula contains only

the X temporal operator or its dual N , which represents weak Next [30, 31], and the

number of these operators is strictly smaller thanK ·|cl(φ)|. Every X or N subformula

in the LTLf formula corresponds to some temporal formula in cl∗(φ). Notably, because210

the natural-number intervals in φ are written in base 10 (decimal) notation, the blow-up

in the translation of Lemma 1 is exponential.

The next lower bound is reminiscent of the NEXPTIME-lower bound shown in [32]

for a fragment of Metric Interval Temporal Logic (MITL), but is different in the details

of the proof as the two logics are quite different.215

Theorem 1. The complexity of MLTL satisfiability checking is NEXPTIME-complete.

Proof. By Lemma 1, there is an LTLf formula θ that accepts the same traces as MLTL

formula φ, and the size of θ is in O(K · |cl(φ)|). The only temporal connectives used

in θ are X and N , since the translation to LTLf reduces all MLTL temporal connectives
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in φ to nested X ’s or N ’s (produced by simplifying ¬X ). Thus, if θ is satisfiable, then220

it is satisfiable by a trace whose length is bounded by the length of θ. Thus, we can just

guess a trace π of exponential length of θ and check that it satisfies φ. As a result, the

upper bound for MLTL-SAT is NEXPTIME.

Before proving the NEXPTIME lower bound, recall the PSPACE-lower bound

proof in [28] for LTL satisfiability. The proof reduces the acceptance problem for a225

linear-space bounded Turing machine M to LTL satisfiability. Given a Turing machine

M and an integer k, we construct a formula φM such that φM is satisfiable iff M ac-

cepts the empty tape using k tape cells. The argument is that we can encode such a

space-bounded computation of M by a trace π of length ck for some constant c, and

then use φM to force π to encode an accepting computation of M . The formula φM230

has to match corresponding points in successive configurations of M , which can be

expressed using a O(k)-nested X ’s, since such points are O(k) points apart.

To prove a NEXPTIME-lower bound for MLTL, we reduce the acceptance problem

for exponentially bounded non-deterministic Turing machines to MLTL satisfiability.

Given a non-deterministic Turing machine M and an integer k, we construct an MLTL235

formula φM of length O(k) such that φM is satisfiable iff M accepts the empty tape in

time 2k. Note that such a computation of a 2k-time bounded Turing machines consists

of 2k many configurations of length 2k each, so the whole computation is of exponen-

tial length – 4k, and can be encoded by a trace π of length 4k, where every point of π

encodes one cell in the computation of M . Unlike the reduction in [28], in the encod-240

ing here corresponding points in successive configurations are exponentially far (2k)

from each other, because each configuration has 2k cells, so the relationship between

such successive points cannot be expressed in LTL. Because, however, the constants in

the intervals of MLTL are written in base-10 (decimal) notation, we can write formulas

of size O(k), e.g., formulas of the form p U[0,2k] q, that relate points that are 2k apart.245

The key is to express the fact that one Turing machine configuration is a proper

successor of another configuration using a formula of size O(k). In the PSPACE-

lower-bound proof of [28], LTL formulas of size O(k) relate successive configurations

of k-space-bounded machines. Here MLTL formulas of size O(k) relate successive

configurations of 2k-time-bounded machines. Thus, we can write a formula φM of250

10



length O(k) that forces trace π to encode a computation of M of length 2k.

Now we consider MLTL0 formulas, and prove that the complexity of checking the

satisfiability of MLTL0 formulas is PSPACE-complete. We first introduce the following

lemma to show an inherent feature of MLTL0 formulas.

Lemma 2. The conjunction of identical MLTL0 U-rooted formulas is equivalent to the255

conjunct with the smallest interval range: (ξ U[0,a] ψ) ∧ (ξ U[0,b] ψ) ≡ (ξ U[0,a] ψ),

where b > a.

Proof. We first prove that for i ≥ 0, the equation (ξ U[0,i] ψ) ∧ (ξ U[0,i+1] ψ) ≡

(ξ U[0,i] ψ) holds. When i = 0, we have (ξ U[0,0] ψ) ≡ f(ψ) and (ξ U[0,1] ψ) ≡

(f(ψ) ∨ f(ξ) ∧ X (f(ψ))). So (ξ U[0,0] ψ) ∧ (ξ U[0,1] ψ) ≡ f(ψ) ≡ (ξ U[0,0] ψ) is

true. Inductively, assume that (ξ U[0,k] ψ) ∧ (ξ U[0,k+1] ψ) ≡ (ξ U[0,k] ψ) is true for

k ≥ 0. When i = k + 1, we have (ξ U[0,k+1] ψ) ≡ (f(ψ) ∨ f(ξ) ∧ X (ξ U[0,k] ψ))

and (ξ U[0,k+2] ψ) ≡ (f(ψ) ∨ f(ξ) ∧ X (ξ U[0,k+1] ψ)). By hypothesis assumption,

(ξ U[0,k] ψ) ∧ (ξ U[0,k+1] ψ) ≡ (ξ U[0,k] ψ) implies that the following equivalence is

true:

(ξ U[0,k+1] ψ) ∧ (ξ U[0,k+2] ψ)

≡ (f(ψ) ∨ (f(ξ) ∧ X (ξ U[0,k] ψ))) ∧ (f(ψ) ∨ (f(ξ) ∧ X (ξ U[0,k+1] ψ)))

≡ f(ψ) ∨ (f(ξ) ∧ X (ξ U[0,k] ψ ∧ ξ U[0,k+1] ψ))

≡ f(ψ) ∨ (f(ξ) ∧ X (ξ U[0,k] ψ))

≡ (ξ U[0,k+1] ψ).

Since (ξ U[0,i] ψ)∧ (ξ U[0,i+1] ψ) ≡ (ξ U[0,i] ψ) is true, we can prove by induction that

(ξ U[0,i] ψ) ∧ (ξ U[0,j] ψ) ≡ (ξ U[0,i] ψ) is true, where j > i. Because b > a is true, it

directly implies that (ξ U[0,a] ψ) ∧ (ξ U[0,b] ψ) ≡ (ξ U[0,a] ψ) is true.260

Lemma 3. X -free LTLf -SAT is reducible to MLTL0-SAT at a linear cost.

Proof. According to [28], the satisfiability checking of X -free LTL formulas is still

PSPACE-complete. This also applies to the satisfiability checking of X -free LTLf

formulas. Given an X -free LTLf formula φ, we construct the corresponding MLTL

formula m(φ) recursively as follows:265
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• m(p) = p where p is an atom;

• m(¬ξ) = ¬m(ξ);

• m(ξ ∧ ψ) = m(ξ) ∧m(ψ);

• m(ξ U ψ) = m(ξ) U[0,2|φ|] m(ψ).

Notably for the Until LTLf formula, we bound it with the interval [0, 2|φ|], where270

φ is the original X -free LTLf formula, in the corresponding MLTL formula, which

is motivated by the fact that every satisfiable LTLf formula has a finite model whose

length is less than 2|φ| [4]. The above translation has linear blow-up, because the

integers in intervals use the decimal notation. Now we prove by induction over the

type of φ that φ is satisfiable iff m(φ) is satisfiable. That is, we prove that (⇒) π |= φ275

implies π |= m(φ) and (⇐) π |= m(φ) implies π |= φ, for some finite trace π.

We consider the Until formula η = ξ U ψ (noting that φ is fixed to the original

LTLf formula), and the proofs are trivial for other types. (⇒) η is satisfiable implies

there is a finite trace π such that π |= η and |π| ≤ 2|φ| [4]. Moreover, π |= η holds iff

there is 0 ≤ i such that πi |= ψ and for every 0 ≤ j < i, πj |= ξ is true (from LTLf280

semantics). By the induction hypothesis, πi |= ψ implies πi |= m(ψ) and πj |= ξ

implies πj |= m(ξ). Also, i ≤ 2|φ| is true because of |π| ≤ 2|φ|. As a result, π |= η

implies that there is 0 ≤ i ≤ 2|φ| such that πi |= m(ψ) and for every 0 ≤ j < i,

πj |= m(ξ) is true. According to the MLTL semantics, π |= m(η) is true. (⇐) m(η)

is satisfiable implies there is a finite trace π such that π |= m(η). According to MLTL285

semantics, there is 0 ≤ i ≤ 2|φ| such that πi |= m(ψ) and for every 0 ≤ j < i it

holds that πj |= m(ξ). By hypothesis assumption, πi |= m(ψ) implies πi |= ψ and

πj |= m(ξ) implies πj |= ξ. Also, 0 ≤ i ≤ 2|φ| implies 0 ≤ i. As a result, π |= m(η)

implies that there is 0 ≤ i such that πi |= ψ and for every 0 ≤ j < i it holds that

πj |= ξ. From LTLf semantics, it is true that π |= η.290

Theorem 2. The complexity of checking the satisfiability of MLTL0 is PSPACE-complete.

Proof. Since Lemma 3 shows a linear reduction from X -free LTLf -SAT to MLTL0-

SAT and X -free LTLf -SAT is PSPACE-complete [4], it directly implies that the lower

bound of MLTL0-SAT is PSPACE-hard.
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For the upper bound, recall from the proof of Theorem 1 that an MLTL formula φ295

is translated to an LTLf formula θ of length K · |cl(φ)|, which, as we commented, in-

volved an exponential blow-up in the notation forK. Following the automata-theoretic

approach for satisfiability, one would translate θ to an NFA and check its non-emptiness

[4]. Normally, such a translation would involve another exponential blow-up. We show

that this is not the case for MLTL0. Recalling from the automaton construction in [4]300

that every state of the automaton is a set of subformulas of θ, the size of a state is at

most K · |cl(φ)|. In the general case, if ψ1, ψ2 are two subformulas of θ corresponding

to the MLTL formulas ξ UI1 ψ and ξ UI2 ψ, ψ1 and ψ2 can be in the same state of the

automaton, which implies that the size of the state can be at most K · |cl(φ)|. When

the formula φ is restricted to MLTL0, we show that the exponential blow-up can be305

avoided. Lemma 2 shows that either ψ1 or ψ2 in the state is enough, since assuming

I1 ⊆ I2, then (ψ1 ∧ ψ2) ≡ ψ1, by Lemma 2. So the size of the state in the automa-

ton for a MLTL0 formula φ is at most |cl(φ)|. For each subformula in the state, there

can be K possible values (e.g., for ♢Iξ in the state, we can have ♢[0,1]ξ, ♢[0,2]ξ, etc.).

Therefore the size of the automaton is in O(2|cl(φ)| ·K |cl(φ)|) ≈ 2O(|cl(φ)|). Therefore,310

MLTL0 satisfiability checking is a PSPACE-complete problem.

4. Implementation of MLTL-SAT

We first show how to reduce MLTL-SAT to the well-explored LTLf -SAT and LTL-

SAT. Then we introduce two new satisfiability-checking strategies based on the inher-

ent properties of MLTL formulas, which are able to leverage the state-of-art model-315

checking and SMT-solving techniques.

4.1. MLTL-SAT via Logic Translation

For a formula φ from one logic, and ψ from another logic, we say φ and ψ are

equi-satisfiable when φ is satisfiable under its semantics iff ψ is satisfiable under its

semantics. Based on Lemma 1 and Theorem 1, we have the following corollary,320

Corollary 1 (MLTL-SAT to LTLf -SAT). MLTL-SAT can be reduced to LTLf -SAT

with an exponential blow-up.
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From Corollary 1, MLTL-SAT is reducible to LTLf -SAT, enabling use of the off-

the-shelf LTLf satisfiability solvers, cf. aaltaf [30]. It is also straightforward to con-

sider MLTL-SAT via LTL-SAT; LTL-SAT has been studied for more than a decade, and325

many off-the-shelf LTL solvers are available, cf. [15, 17, 33].

Theorem 3 (MLTL to LTL). For an MLTL formula φ, there is an LTL formula θ such

that φ and θ are equi-satisfiable, and the size of θ is in O(K · |cl(φ)|), where K is the

maximal integer in φ.

Proof. Lemma 1 provides a translation from the MLTL formula φ to the equivalent330

LTLf formula φ′, with a blow-up of O(K · |cl(φ)|). As shown in Section 2, there is

a linear translation from the LTLf formula φ′ to its equi-satisfiable LTL formula θ [4].

Therefore, the blow-up from φ to θ is in O(K · |cl(φ)|).

Corollary 2 (MLTL-SAT to LTL-SAT). MLTL-SAT can be reduced to LTL-SAT with

an exponential blow-up.335

Since MLTL-SAT is reducible to LTL-SAT, MLTL-SAT can also benefit from the

power of LTL satisfiability solvers. Moreover, the reduction from MLTL-SAT to LTL-

SAT enables leveraging modern model-checking techniques to solve the MLTL-SAT

problem, due to the fact that LTL-SAT has been shown to be reducible to model check-

ing with a linear blow-up [15, 16].340

Corollary 3 (MLTL-SAT to LTL-Model-checking). MLTL-SAT can be reduced to LTL

model checking with an exponential blow-up.

In our implementation, we choose the model checker nuXmv [34] for LTL sat-

isfiability checking, as it allows an LTL formula to be directly input as the temporal

specification together with a universal model as described in [15, 16].345

4.2. Model Generation

Using the LTL formula as the temporal specification in nuXmv has been shown,

however, to not be the most efficient way to use model checking for satisfiability check-

ing [17]. Consider the MLTL formula ♢[0,10]a∧♢[1,11]a. The translated LTLf formula
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is f(♢[0,10]a) ∧ X (f(♢[0,10]a)), where f(♢[0,10]a) has to be constructed twice. To350

avoid such redundant construction, we follow [17] and encode directly the input MLTL

formula as an SMV model (the input model of nuXmv) rather than treating the LTL

formula, which is obtained from the input MLTL formula, as a specification.

An SMV [35] model consists of a Boolean transition system Sys = (V, I, T ),

where V is a set of Boolean variables, I is a Boolean formula representing the initial355

states of Sys, and T is the Boolean transition formula. Moreover, a specification to be

verified against the system is also contained in the SMV model (here we focus on the

LTL specification). Given the input MLTL formula φ, we construct the corresponding

SMV model Mφ as follows.

• Introduce a Boolean variable for each atom in φ as well as for “Tail” (new360

variable identifying the end of a finite trace).

• Introduce a Boolean variable X ψ for each U formula ψ in cl∗(φ), which repre-

sents the intermediate temporal formula Xψ.

• Introduce a temporary Boolean variable3 T ψ for each U formula in cl∗(φ).

• A Boolean formula e(ψ) is used to represent the formula ψ in cl∗(φ) in the SMV365

model, which is defined recursively as follows.

1. e(ψ) = ψ, if ψ is an Boolean atom;

2. e(ψ) = ¬e(ψ1), if ψ = ¬ψ1;

3. e(ψ) = e(ψ1) ∧ e(ψ2), if ψ = ψ1 ∧ ψ2;

4. e(ψ) = T ψ, if ψ is an U formula.370

• Let the initial Boolean formula of the system Sys be e(φ).

• For each temporary variable T ψ, create a DEFINE statement according to the

type and interval of ψ, as follows.

3A temporary variable is introduced in the DEFINE statement rather than the VAR statement of the SMV

model, as it will be automatically replaced with those in VAR statements.
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Tψ1U[a,b]ψ2
=


X (ψ1U[a−1,b−1]ψ2), if 0 < a ≤ b;

e(ψ2) ∨ (e(ψ1) ∧ X (ψ1U[0,b−1]ψ2)), if a = 0 and 0 < b;

e(ψ2), if a = 0 and b = 0.

• Create the Boolean formula (X ψ ↔ (¬Tail ∧ next(e(ψ)))) for each X ψ in

the VAR list (the set V in Sys) of the SMV model.

• Finally, designate the LTL formula □¬Tail as the temporal specification of the

SMV model Mφ (which implies that a counterexample trace satisfies ♢Tail).375

In a nutshell, the SMV model for θ has the analogous structure in Table 1.

Encoding heuristics for MLTL0 formulas. We also encode the rules shown in

Lemma 2 to prune the state space for checking the satisfiability of MLTL0 formu-

las. These rules are encoded using the INVAR constraint in the SMV model. Tak-

ing the U formula as an example, we encode T (ψ1U[0,a]ψ2) ∧ T (ψ1U[0,a−1]ψ2) ↔380

T (ψ1U[0,a−1]ψ2) (a > 0) for each ψ1U[0,a]ψ2 in cl∗(φ). Similar encodings also ap-

ply to the R formulas in cl∗(φ). Theorem 4 below guarantees the correctness of the

translation, and it can be proved by induction over the type of φ and the construction

of the SMV model.

Theorem 4. The MLTL formula φ is satisfiable iff the corresponding SMV model Mφ385

violates the LTL property □¬Tail.

There are different techniques that can be used for LTL model checking. Based

on the latest evaluation of LTL satisfiability checking [33], the KLIVE [24] back-end

implemented in the SMV model checker nuXmv [34] produces the best performance.

We thus choose KLIVE as our model-checking technique for MLTL-SAT.390

Bounded MLTL-SAT Although MLTL-SAT is reducible to the satisfiability problem of

other well-explored logics, with established off-the-shelf satisfiability solvers, a dedi-

cated solution based on inherent properties of MLTL may be superior. One intuition is,

since all intervals in MLTL formulas are bounded, the satisfiability of the formula can

be reduced to Bounded Model Checking (BMC) [36].395
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Table 1: The SMV encoding for MLTL formula φ.

VAR

a: Boolean; //for each atom a in φ

. . .

Tail: Boolean; //for Tail;

X ψ: Boolean; //for each U , R, W and V formula in cl∗(φ);

. . .

N ψ: Boolean; //for each U , R, W and V formula in cl∗(φ);

. . .

INIT

e(θ);

DEFINE

T ψ := X (ψ1U[a−1,b−1]ψ2); // for ψ1U[a,b]ψ2 and b ≥ a > 0

. . .

INVAR // for MLTL0 encoding only

T (ψ1U[0,a]ψ2) ∧ T (ψ1U[0,a−1]ψ2) ↔ T (ψ1U[0,a−1]ψ2) &&

. . .

TRANS

(X ψ ↔ (¬Tail ∧ next(e(ψ)))) &&

. . . &&

(N ψ ↔ (Tail ∨ next(e(ψ)))) &&

. . . && TRUE;

LTLSPEC

□¬Tail;

FAIRNESS TRUE

Theorem 5. Given an MLTL formula φ with K as the largest natural in the intervals

of φ, φ is satisfiable iff there is a finite trace π with |π| ≤ K · |cl(φ)| such that π |= φ.

Proof. From Lemma 1, there is an LTLf formula θ of φ, of size of O(K · |cl(φ)|), that

is equivalent to φ. Moreover, θ contains only X and N temporal operators, the number
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of which is less than K · |cl(φ)|. Let T (θ) be the set of temporal operators in θ, |T (θ)|400

denote the size of T (θ), and nnf(θ) be the NNF (Negation Normal Form) of θ. An

LTLf formula is in NNF if every negation operator ¬ appears only in front of atoms

of the formula. For the LTLf formula θ, there is a NNF MLTL formula nnf(θ) such

that θ ≡ nnf(θ), where nnf(θ) can be obtained by making use of the dual operators.

Consider θ = ¬(a∧ (bUc)), nnf(θ) is (¬a)∨ ((¬b)R(¬c)). Moreover, the conversion405

cost is linear to the size of θ.

By construction, nnf(θ) ≡ θ and |T (θ)| = |T (nnf(θ))| are true. We now prove

that, for a finite trace ξ |= nnf(θ), there is a prefix ξ′ of ξ such that ξ′ |= nnf(θ) and

|ξ′| ≤ |T (nnf(θ))|+1. If |ξ| ≤ |T (nnf(θ))|+1, then ξ′ is ξ itself. So we only need to

consider the situation when |ξ| > |T (nnf(θ))|+ 1.410

• If nnf(θ) is a literal, ξ |= nnf(θ) implies ξ[0] |= nnf(φ). Let ξ′ = ξ[0] and it is

true that |ξ′| ≤ |T (nnf(θ))|+ 1 = 1;

• If nnf(θ) = ψ1 ∧ ψ2, ξ |= nnf(θ) implies ξ |= ψ1 and ξ |= ψ2. By induction,

there are η and η′, which are prefixes of ξ such that η |= ψ1, |η| ≤ |T (ψ1)| + 1

and η′ |= ψ2, |η′| ≤ |T (ψ2)| + 1. Assume wlog that |η| ≥ |η′|, and let ξ′ = η.415

We know that ξ′ |= nnf(θ) and |ξ′| = |T (ψ1)| + 1 ≤ |T (nnf(θ))| + 1 is true.

The proof is analogous if nnf(θ) = ψ1 ∨ ψ2;

• If nnf(θ) = Xψ, ξ |= nnf(θ) implies that ξ1 |= ψ. By there is a prefix ξ′1of ξ1

such that ξ′1 |= ψ and |ξ′1| ≤ |T (ψ)| + 1. Let ξ′ = ξ[0] · ξ′1, and we know that

ξ′ |= nnf(θ) is true, and |ξ′| = |T (ψ)|+ 1 + 1 ≤ |T (nnf(θ))|+ 1;420

• If nnf(θ) = Nψ, and since we only consider the case when |ξ| > |T (nnf(θ))|+

1, we have that ξ |= nnf(θ) implies that ξ1 |= ψ. As a result, the proof for the

case of N formula is the same as that of X formula.

Since we proved that ξ |= nnf(θ) implies there is a prefix ξ′ of ξ such that ξ′ |= nnf(θ)

and |ξ′| ≤ |T (nnf(θ)|)+1; it is also true that ξ |= θ implies there is a prefix ξ′ of ξ such425

that ξ′ |= θ and |ξ′| ≤ |T (θ)|+ 1 ≤ K · |cl(φ)|; and thus we prove that ξ |= φ implies

there is a prefix ξ′ of ξ such that ξ′ |= φ and |ξ′| ≤ K · |cl(φ)|. That means, whenever

φ is satisfiable, there is a trace ξ′ |= φ with the size bounded by K · |cl(φ)|.

18



Theorem 5 states that the satisfiability of a given MLTL formula can be reduced

to checking for the existence of a satisfying trace. To apply the BMC technique in430

nuXmv, we compute and set the maximal depth of BMC to be the value of K · |cl(φ)|

for a given MLTL formula φ. The input SMV model for BMC is still Mφ, as described

in Section 4.2. However to ensure correct BMC checking in nuXmv, the constraint

“FAIRNESS TRUE” has to be added into the SMV model.4 The LTLSPEC remains

□¬Tail. According to Theorem 5, φ is satisfiable iff the model checker returns a435

counterexample by using the BMC technique within the maximal depth of K · |cl(φ)|.

4.3. MLTL-SAT via SMT Solving

Another approach to solve MLTL-SAT is via SMT solving, considering that using

SMT solvers to handle intervals in MLTL formulas is straightforward. Since the input

logic of SMT solvers is First-Order Logic, we must first translate the MLTL formula to440

its equi-satisfiable formula in First-Order Logic over the natural domainN . We assume

that readers are familiar with First-Order Logic and only focus on the translation. Given

an MLTL formula φ and the alphabet Σ, we construct the corresponding formula in

First-Order Logic over N in the following way.

1. For each p ∈ Σ, define a corresponding function fp : Int → Bool such that445

fp(k) is true (k ∈ N ) iff there is a satisfying (finite) trace π of φ and p is in π[k].

2. The First-Order Logic formula fol(φ, k, len) for φ (k, len ∈ N ) is constructed

recursively as below:

• fol(true, k, len) = (len > k) and fol(false, k, len) = false;

• fol(p, k, len) = (len > k) ∧ fp(k) for p ∈ Σ;450

• fol(¬ξ, k, len) = (len > k) ∧ ¬fol(ξ, k, len);

• fol(ξ ∧ ψ, k, len) = (len > k) ∧ fol(ξ, k, len) ∧ fol(ψ, k, len);

• fol(ξ U[a,b] ψ, k, len) = (len > a + k)∧∃i.( (a + k ≤ i ≤ b + k)∧

fol(ψ, i, len− i)∧ ∀j.((a+ k ≤ j < i) → fol(ξ, j, len− j)));

4Based on comments in emails from the nuXmv developers.
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In the formula fol(φ, k, len), k represents the index of the (finite) trace from which455

φ is evaluated, and len indicates the length of the suffix of the trace starting from

the index k. Since the formula is constructed recursively, we need to introduce k to

record the index. Meanwhile, len is necessary because the MLTL semantics, which

is interpreted over finite traces, constrains the lengths of the satisfying traces of the

Until formulas. The following theorem guarantees that MLTL-SAT is reducible to the460

satisfiability of First-Order Logic.

Theorem 6. For an MLTL formula φ, φ is satisfiable iff the corresponding First-Order

Logic formula ∃len.fol(φ, 0, len) is satisfiable.

Proof. Let the alphabet of φ be Σ, and π ∈ (2Σ)∗ be a finite trace. For each p ∈ Σ,

we define the function fp : Int → Bool as follows: fp(k) = true iff p ∈ π[k] if465

0 ≤ k < |π|. We now prove by induction over the type of φ and the construction

of fol(φ, k, len) with respect to φ that πk |= φ holds iff {fp|p ∈ Σ} is a model of

fol(φ, k, |π|): here |π| is the length of π. The cases when φ is true or false are trivial.

• If φ = p is an atom, πk |= φ holds iff p ∈ π[k] (i.e., πk[0]) is true, which means

fp(k) = true. As a result, {fp} is a model of fol(φ, k, |π|), which implies that470

πk |= φ holds iff {fp|p ∈ Σ} is a model of fol(φ, k, |π|).

• If φ = ¬ξ, πk |= φ holds iff πk ̸|= ξ holds. By hypothesis assumption, πk |= ξ

holds iff {fp|p ∈ Σ} is a model of fol(ξ, k, |π|), which is equivalent to saying

πk ̸|= ξ holds iff {fp|p ∈ Σ} is not a model of fol(ξ, k, |π|). As a result, πk |= ¬ξ

holds iff {fp|p ∈ Σ} is a model of ¬fol(ξ, k, |π|).475

• If φ = ξ ∧ ψ, πk |= φ holds iff πk |= ξ and πk |= ψ. By hypothesis assumption,

πk |= ξ (resp. πk |= ψ) holds iff {fp|p ∈ Σ} is a model of fol(ξ, k, |π|) (resp.

fol(ψ, k, |π|)). According to the construction of the fol function, {fp|p ∈ Σ} is

a model of fol(ξ ∧ ψ, k, |π|). As a result, πk |= ξ ∧ ψ holds iff {fp|p ∈ Σ} is a

model of fol(ξ ∧ ψ, k, |π|).480

• If φ = ξ U[a,b] ψ, πk |= φ holds iff there is a+ k ≤ i ≤ b+ k such that πi |= ψ

and πj |= ξ holds for every a + k ≤ j < i. By hypothesis assumption, πi |= ψ
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holds iff {fp|p ∈ Σ} is a model of fol(ψ, i, len− i) (the length of πi is len− i),

and π, j |= ξ holds iff {fp|p ∈ Σ} is a model of fol(ξ, j, |π| − j) (the length

of πj is |π| − j). Moreover, |π| > a + k must be true according to the MLTL485

semantics. As a result, {fp|p ∈ Σ} is a model of fol(φ, k, |π|), which implies

that πk |= ξ U[a,b]ψ holds iff {fp|p ∈ Σ} is a model of fol(ξ U[a,b] ψ, k, |π|).

This proof holds for all values of k, including the special case where k = 0.

We then encode ∃len.fol(φ, 0, len) into the SMT-LIB v2 format [37], which is the

input of most modern SMT solvers; we call the full SMT-LIB v2 encoding SMT(φ).490

We first use the “declare-fun” command to declare a function fa : Int → Bool for

each p ∈ Σ. We also define the function fφ : Int × Int → Bool for the First-Order

Logic formula fol(φ, k, len). The corresponding SMT-LIB v2 command is “define-

fun fφ ((k Int) (len Int)) Bool S(fol(φ, k, len))”, where S(fol(φ, k, len)) is the

SMT-LIB v2 implementation of fol(φ, k, len). In detail, S(fol(φ, k, len)) is acquired495

recursively as follows.

• S(fol(p, k, len)) −→ (and (> len k) (fp k))

• S(¬fol(φ, k, len)) −→ (and (> len k) (not S(fol(φ, k))))

• S(fol(φ1∧ψ, k, len) −→ (and (> len k) (and S(fol(φ1, k, len)) S(fol(ψ, k, len))))

• S(fol(φ1 U[a,b] ψ, k, len)) −→ (and (> len a + k) (exists (i Int) (and (≤500

(+ a k) i) (≥ i (+ b k)) S(fol(ψ, i, len − i)) (forall (j Int) (⇒ (and (≤

(+ a k) j) (< j i)) S(fol(φ1, j, len− j)))))))

Finally, we use the “assert” command “(assert (exists ((len Int)) (fφ 0 len)))”

together with the “(check-sat)” command to request SMT solvers for the satisfiability

of ∃len.fol(φ, 0, len). In a nutshell, the general framework of the SMT-LIB v2 for-505

mat for SMT(φ) (i.e., ∃len.fol(φ, 0, len)) is shown in Table 2, and the correctness is

guaranteed by Theorem 7 below.

Example 1. The SMT encoding for (F [0, 10001]¬p) ∧ (G[0, 10000]p) is shown as

below:
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Table 2: The SMT-LIB v2 template for SMT(φ).

(declare-fun fa (Int) Bool) //declare corresponding function for a ∈ Σ

. . .

//define function for fol(φ, k, len)

(define-fun fφ ((k Int) (len Int)) Bool S(fol(φ, k, len)))

(assert (exists ((len Int)) (fφ 0)))

(check-sat)

(declare-fun f_p (Int) Bool)

(declare-fun f (Int) Bool)

(assert (= (f 0)

(and

(forall ((x Int))

(implies

(and

(<= 0 x)

(<= x 10000)

)

(f_p x)

)

)

(exists ((x Int))

(and

(and

(<= 0 x)

(<= x 10001)

)

( not (f_p x) )

)

)

)

)
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)

(assert (f 0))

(check-sat)

Theorem 7. The First-Order Logic formula ∃len.fol(φ, 0, len) is satisfiable iff the510

SMT solver returns SAT with the input SMT(φ).

An inductive proof for the theorem can be conducted according to the construction

of SMT(φ). Notably, there is no difference between the SMT encoding for MLTL

formulas and that for MLTL0 formulas, as the SMT-based encoding does not require

unrolling the temporal operators in the formula.515

An alternative SMT encoding. Since SMT is essentially a combination of different

theories, the performance of SMT solving may hence vary on the theories used by the

solver. Consider the encoding S(fol(φ, 0, len)) above, an alternative to the function for

each variable in Σ is to use an array instead, in which the Array (or ArrayEx) theory

can apply. Therefore, each fa in the previous encoding corresponds to an array Aa in520

the alternative one, with (fa k) being replaced by “(select Aa k)”. It is interesting to

explore how different SMT theories affect the satisfiability-checking performance, and

we will answer this question in the next section.

5. Experimental Evaluations

Tools and Platform. We implemented the translator MLTLconverter in C++, includ-525

ing encodings for an MLTL formula as equi-satisfiable LTL and LTLf formulas, and

corresponding SMV and SMT-LIB v2 models. We leverage the extant LTL solver aalta

[33], LTLf solver aaltaf [30], SMV model checker nuXmv [34], and the SMT solver

Z3 [38] to check the satisfiability of the input MLTL formula in their respective en-

codings from MLTLconverter. The solvers, including the runtime flags we used, are530

summarized in Table 3. We evaluated both BMC and KLIVE [24] model-checking

back-ends in nuXmv, and the corresponding commands are shown in Figure 1. No-

tably in the figure, the maximal length “MAX” to run BMC is computed dynamically

for each MLTL formula, based on Theorem 5.
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Table 3: List of solvers and their runtime flags.

Encoding MLTLconverter flag Solver Solver flag

LTL -ltl aalta default

LTLf -ltlf aaltaf default

SMV -smv nuXmv
-source bmc.cmd (BMC)

-source klive.cmd (KLIVE)

SMT-LIB v2 -smtlib Z3 -smt2

read model

flatten hierarchy

encode variables

build boolean model

bmc setup

go bmc

check ltlspec bmc -k MAX

quit

read model

flatten hierarchy

encode variables

build boolean model

check ltlspec klive -d

quit

Figure 1: nuXmv commands for BMC (left) and KLIVE (right).

All experiments were executed on Rice University’s NOTS cluster,5 running Red-535

Hat 5, with 226 dual socket compute blades housed within HPE s6500, HPE Apollo

2000, and Dell PowerEdge C6400 chassis. All the nodes are interconnected with 10

GigE network. Each satisfiability check over one MLTL formula and one solver was

executed with exclusive access to one CPU and 8 GB RAM with a timeout of one hour,

as measured by the Linux time command. We assigned a time penalty of one hour to540

benchmarks that segmentation fault or timeout.

Experimental Goals. We evaluate performance along three metrics. (1) Each satisfia-

bility check has two parts: the encoding time (consumed by MLTLconverter) and the

solving time (consumed by solvers). We evaluate how each encoding affects the per-

formance of both stages of MLTL-SAT. (2) We comparatively analyze the performance545

and scalability of end-to-end MLTL-SAT via LTL-SAT, LTLf -SAT, LTL model check-

5https://docs.rice.edu/confluence/display/CD/NOTS+Overview
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ing, and our new SMT-based approach. (3) We evaluate the performance and scalability

for MLTL0 satisfiability checking using MLTL0-SAT encoding heuristics (Lemma 2).

Benchmarks. There are few MLTL (or even MTL-over-naturals) benchmarks avail-

able for evaluation. Previous works on MTL-over-naturals [29, 2, 26] mainly focus on550

the theoretic exploration of the logic. To enable rigorous experimental evaluation, we

develop three types of benchmarks, motivated by the generation of LTL benchmarks

[15].6

1. Random MLTL formulas (R): We generated 10,000 R formulas, varying the for-

mula length L (20, 40, 60, 80, 100), the number of variablesN (1, 2, 3, 4, 5), and555

the probability of the appearance of the U operator P (0.33, 0,5, 0.7, 0.95); for

each (L,N, P ) we generated 100 formulas. For every U operator, we randomly

chose an interval [i, j] where i ≥ 0 and j ≤ 100.

2. NASA-Boeing MLTL formulas (NB): We use challenging benchmarks [39] cre-

ated from projects at NASA [40, 41] and Boeing [42]. We extract 63 real-life560

LTL requirements from the SMV models of the benchmarks, and then randomly

generate an interval for each temporal operator. (We replace each X with □[1,1].)

We create 3 groups of such formulas (63 in each) to test the scalability of differ-

ent approaches, by restricting the maximal number of the intervals to be 1,000,

10,000, and 100,000 respectively.565

3. Random MLTL0 formulas (R0): We generated 500 R0 formulas in the same way

as the R formulas, except that every generated interval was restricted to start from

0; we generated sets of five for each (L,N, P ). This small set of R benchmarks

serve to compare the performance on MLTL0 formulas whose SMV encodings

were created with/without heuristics.570

4. Unsatisfiable Random Conjunctive formulas (RC): Our preliminary evaluations

show that 98% of the formulas collected in the above three benchmarks are sat-

isfiable, which makes it hard to evaluate different approaches on unsatisifability

checking. Inspired from the fact shown in [30] that large conjunctive formulas

6All experimental materials are at https://github.com/lijwen2748/mltlsat. The plots are

best viewed online.
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tends to be unsatisfiable, we construct random conjunctive formulas for MLTL575

as follows.

• A random conjunctive MLTL formula with the length n has the form of∧
1≤i≤n Ci where Ci is a small MLTL patterns that are widely used in

practice;

• Despite little work has investigated the common-used MLTL formulas,580

there are 26 off-the-shelf LTLf patterns collected in Table 4. As a result, we

construct the MLTL patterns in demand from the corresponding LTLf ones.

Informally for each LTLf pattern in Table 4, we replace the X operator with

♢[1,1] and the ♢, □ and U operators with ♢[l,h], □[l,h] and U[l,h] respectively

by randomly choosing l and h such that l ≤ h. Notably, the W operator585

shown in Table 4 can be replaced by G and U , i.e. ξWψ ≡ Gξ ∨ ξUψ.

• We originally generated three groups of 1,000 RC formulas each, varying

the number of conjuncts C (5, 10, 15, 20, 25), the number of variables N

(1, 2, 3, 4, 5), and the interval ranges R ([0, 50], [0, 100], [0,500]); for

each (C,N,R) we generated 100 formulas. Recall that we aim to gener-590

ate unsatisfiable MLTL formulas, so we first run a preliminary evaluation

on these formulas and then select 800 unsatisfiable instances as our RC

benchmark.

Correctness Checking. We compared the verdicts from all solvers for every test in-

stance and found no inconsistencies, excluding segmentation faults. This exercise aided595

with verification of our implementations of the translators, including diagnosing the

need for including FAIRNESS TRUE in BMC models.

Experimental Results. Figure 2 compares encoding times for the R benchmark for-

mulas. We find that (1) Encoding MLTL as either LTL and LTLf is not scalable even

when the intervals in the formula are small; (2) The cost of MLTL-to-SMV encoding is600

comparable to that from MLTL to SMT-LIB v2. Although the cost of encoding MLTL

as LTL/LTLf and SMV are in O(K · |cl(φ)|), where K is the maximal interval length

in φ, the practical gap between the LTL/LTLf encodings and SMV encoding affirms

our conjecture that the SMV model is more compact in general than the corresponding
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Table 4: LTLf -Specific Benchmarks: formulas specifically designed for LTLf from previous works,

adapted to be benchmarks for our experiments. To create benchmarks from Declare Templates, we sub-

stituted variables for branches, then created formula-generating scripts.
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Figure 2: Cactus plot for different MLTL encodings on R formulas: LTL-SAT and LTLf -SAT lines overlap;

SMV and SMT lines overlap.
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Figure 4: Proportion of segmentation faults for sets of 200 R formulas with maximal interval ranges varying

from 100 to 1000.

LTL/LTLf formulas. Also becauseK is kept small in the R formulas, the encoding cost605

between SMV and SMT-LIB v2 becomes comparable.

Figure 3 shows total satisfiability checking times for R benchmarks. Recall that

the inputs of both BMC and KLIVE approaches are SMV models. The MLTL-SAT

via KLIVE is the fastest solving strategy for MLTL formulas with interval ranges of

less than 100. The portion of satisfiable/unsatisfiable formulas of this benchmark is610

approximate 4/1. Although BMC is known to be good at detecting counterexamples

with short lengths, it does not perform as well as the KLIVE and SMT approaches on

checking satisfiable formulas since only longer counterexamples (with length greater

than 1000) exist for most of these formulas. While nuXmv successfully checked all

such models, Figure 4 shows that increasing the interval range constraint results in615

segmentation faults; more than half of our benchmarks produced this outcome for for-

mulas with allowed interval ranges of up to 600. Meanwhile, the solving solutions via

LTL-SAT/LTLf -SAT are definitely not competitive for any interval range.

The SMT-based approach dominates the model-checking-approaches when con-

sidering scalable NB benchmarks, as shown in Figure 5. Here, e.g., “BMC-1000”620
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means using BMC to check the group of benchmarks with a maximal interval range of

1,000, and the analogous meaning applies to “KLIVE-1000”. Since we consider two

different SMT encodings in this paper, we use “Z3-F” to represent the encoding with

the uninterpreted function theory and “Z3-A” for the one with the array theory. Due

to segmentation faults, “BMC-1000” and “KLIVE-1000” have almost the same per-625

formance because the SMV models generated from our translator MLTLconverter are

too large for nuXmv to handle. The performance of the model-checking approaches

is constrained by the scalability of the model checker (nuXmv). However, the SMT

encoding does not face such a bottleneck; see “Z3-F-1000,” “Z3-F-10000,” and “Z3-F-

100000” in Figure 5. We conclude that the SMT approach is the best available strategy630

for MLTL satisfiability checking.

We then evaluated the performance between the two different SMT encodings, as

shown in Figure 6. It turns out that there is no big performance gap between these two

encodings: the encoding with the array theory performs only slightly less well than the

one with the uninterpreted function theory. The conclusion that changing different en-635

coding ways may affect the satisfiability-checking performance significantly, as shown

in [17] for the SMV encodings, seems not directly applicable to the SMT encodings.

We also evaluated the performance of model-checking-based approaches on the R0

formulas, observing that there is an exponential complexity gap between MLTL-SAT

and MLTL0-SAT. Figure 7 compares the performance of satisfiability solving via the640

BMC and KLIVE approaches. There is no significant improvement when the SMV

encoding heuristics for MLTL0 are applied. For the BMC solving approach, perfor-

mance is largely unaffected by encoding heuristics. For the KLIVE solving approach,

encoding heuristics decrease solving performance. The results support the well-known

phenomenon that the theoretic analysis and the practical evaluations do not always645

match.

Finally, we compared different approaches on checking unsatisifiable random con-

junction formulas, as shown in Fig. 8. The results indicates that the SMT approach

performs best for checking unsatisfiability. The reason why there is a big performance

gap between the other two approaches and the SMT ones is because the benchmarks650

contain those formulas whose interval ranges are greater than 100. Both the BMC and
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KLIVE solving techniques cannot perform well on the formulas whose interval ranges

are greater than 100. However, the conclusion that the model-checking approach per-

forms best still preserves on unsatisfiable formulas whose interval ranges are smaller

than 100.655

We summarize with the following five conclusions. (1) For satisfiability checking

of MLTL formulas, the new SMT-based approach is best. (2) For satisfiability check-

ing of MLTL formulas with interval ranges less than 100, the MLTL-SAT via KLIVE

approach is fastest. (3) The above two observations on both satisfiable and unsatisfi-

able formulas. (4) The SMT encodings with different theories do not perform quite660

differently in evaluation. (5) The dedicated encoding heuristics for MLTL0 do not sig-

nificantly improve the satisfiability checking time of MLTL0-SAT over MLTL-SAT.

They do not solve the nuXmv scalability problem;

6. Discussion and Conclusion

Metric Temporal Logic (MTL) was first introduced in [2], for describing continuous665

behaviors interpreted over infinite real-time traces. The later variants Metric Interval

Temporal Logic (MITL) [46], and Bounded Metric Temporal Logic (BMTL) [47] are

also interpreted over infinite traces. Intuitively, MLTL is a combination of MITL and

BMTL that allows only bounded, discrete (over natural domain) intervals that are in-

terpreted over finite traces. There are several previous works on the satisfiability of670

MITL, though their tools only support the infinite semantics. Bounded satisfiability

checking for MITL formulas is proposed in [48], and the reduction from MITL to LTL

is presented in [49]. Since previous works focus on MITL over infinite traces and there

is no trivial way to reduce MLTL over finite traces to MITL over infinite traces, the pre-

vious methodologies are not comparable to those presented in this paper. This includes675

the SMT-based solution of reducing MITL formulas to equi-satisfiable Constraint LTL

formulas [23]. Compared to that, our new SMT-based approach more directly encodes

MLTL formulas into the SMT language without translation through an intermediate

language.

The contribution of a complete, correct, and open-source MLTL satisfiability check-680

ing algorithm and tool opens up avenues for a myriad of future directions, as we have
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now made possible specification debugging MLTL formulas in design-time verifica-

tion and benchmark generation for runtime verification. We plan to explore alternative

encodings for improving the performance of MLTL satisfiability checking and work

toward developing an optimized multi-encoding approach, following the style of the685

previous study for LTL [17]; the current SMT model generated from the MLTL for-

mula uses a relatively simple theory (uninterpreted functions). We also plan to explore

lazy encodings from MLTL formulas to SMT models. For example, instead of encoding

the whole MLTL formula into a monolithic SMT model, we may be able to decrease

overall satisfiability-solving time by encoding the MLTL formula in parts with dynamic690

ordering similar to [39]. To make the output of SMT-based MLTL satisfiability check-

ing more usable, we plan to investigate translations from the functions returned from

Z3 for satisfiable instances into more easily parsable satisfying assignments.
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