
MLTL Multi-type (MLTLM):
A Logic for Reasoning about Signals of Different Types ⋆

Gokul Hariharan1,∗[0000−0002−3447−2183],
Brian Kempa1[0000−0003−2239−4218], Tichakorn Wongpiromsarn1[0000−0002−3977−122X],

Phillip H. Jones1[0000−0002−8220−7552], and Kristin Y. Rozier1[0000−0002−6718−2828]

Iowa State University
*gokul@iastate.edu, bckempa@iastate.edu,

nok@iastate.edu, phjones@iastate.edu, kyrozier@iastate.edu

Abstract. Modern cyber-physical systems (CPS) operate in complex systems of sys-
tems that must seamlessly work together to control safety- or mission-critical functions.
Capturing specifications in a logic like LTL enables verification and validation of CPS
requirements, yet an LTL formula specification can imply unrealistic assumptions, such
as that all signals populating the variables in the formula are of type Boolean and agree
on a standard time step. To achieve formal verification of CPS systems of systems,
we need to write validate-able requirements that reason over (sub-)system signals of
different types, such as signals with different timescales, or levels of abstraction, or
signals with complex relationships to each other that populate variables in the same
formula. Validation includes both transparency for human validation and tractability
for automated validation, e.g., since CPS often run on resource-limited embedded
systems. Specifications for correctness of numerical algorithms for CPS need to be
able to describe global properties with precise representations of local components.
Therefore, we introduce Mission-time Linear Temporal Logic Multi-type (MLTLM), a
logic building on MLTL, to enable writing clear, formal requirements over finite input
signals (e.g., sensor signals, local computations) of different types, cleanly coordinating
the temporal logic and signal relationship considerations without significantly increas-
ing the complexity of logical analysis, e.g., model checking, satisfiability, runtime
verification (RV). We explore the common scenario of CPS systems of systems oper-
ating over different timescales, including a detailed analysis with a publicly-available
implementation of MLTLM.
We contribute: (1) the definition and semantics of MLTLM, a lightweight extension
of MLTL allowing a single temporal formula over variables of multiple types; (2) the
construction and use of an MLTLM fragment for time-granularity, with proof of the
language’s expressive power; and (3) the design and empirical study of an MLTLM
runtime engine suitable for real-time execution on embedded hardware.

1 Introduction
Design and verification of safety-critical systems, such as aircraft, spacecraft, robots, and auto-
mated vehicles, requires precise, unambiguous specifications that enable automated reasoning
such as model checking, synthesis, requirements debugging, runtime verification (RV), and
checking for satisfiability, reachability, realizability, vacuity, and other important properties

⋆ Artifacts for reproducibility appear at: http://temporallogic.org/research/
NSV2022/. Funded in part by NSF:CPS Award #2038903, NSF:CAREER Award #1664356,
and NASA Cooperative Agreement Grant #80NSSC21M0121

http://temporallogic.org/research/NSV2022/
http://temporallogic.org/research/NSV2022/

2 Hariharan et al.

of system requirements. Modern, cyber-physical systems-of-systems present a unique chal-
lenge for specification, and consequently for scalable verification and validation, due to their
distributed and hierarchical nature. To seed automated reasoning for CPS systems-of-systems,
we need to be able to seamlessly construct global properties combining local phenomena and
coordinate requirements for numerical computations like supervision and signal processing
over data and variables of different types and sampling frequencies.

Due to the popularity of timelines in operational concepts for CPS systems-of-systems
LTL provides an intuitive way to precisely specify system requirements. The relative com-
putational efficiency of automated reasoning (e.g., model checking, satisfiability checking)
adds to the appeal of LTL as a specification logic. Since CPS specifications most often
need to describe finite missions with referenceable time steps, variations of LTL over finite
signals (sometimes also called “traces”) emerged with intervals on the temporal operators.
Variations on Metric Temporal Logic (MTL)[28], such as Signal Temporal Logic (STL)[16]
and Mission-time Linear Temporal Logic (MLTL)[29,23] vary widely in the types of fi-
nite bounds they introduce on LTL’s temporal operators and the complexity of automated
reasoning (e.g., model checking, satisfiability checking) over these logics. MLTL, which
adds finite, closed, integer bounds on LTL’s temporal operators, has emerged as a popular
specification logic for complex CPS systems-of-systems such as the NASA Lunar Gateway
Vehicle System Manager [12], and a JAXA autonomous satellite mission [27]; see [24] for
a collection of MLTL patterns over a weather balloon, automated air traffic management
system, sounding rocket, and satellite. Again, we see the selection of MLTL center on the
balance of expressiveness with computational efficiency; MLTL efficiently reduces to LTL
[23] and recent work has contributed very efficient, flight-certifiable, encodings of MLTL for
runtime verification in resource-limited embedded hardware [20].

However, realistic requirements for CPS systems-of-systems need to combine variables
of different types in the same requirement. For example, a requirement specified as an LTL
formula may implicitly presume that the input signals populating its atomic propositions share
a common notion of a time step. But we struggle to write a single formula to describe a global
property about a system where different sub-systems operate at different times, or, more
generally, over different types with a non-obvious comparison function. For one example, this
problem emerges when we try to specify global safety properties of deep-space-exploring craft.
One subsystem of the spacecraft may regulate monthly cycles to wake from hibernation and ex-
ecute course corrections whereas another subsystem may operate on the nanosecond frequency
to make hyper-sensitive adjustments; it is not obvious how to efficiently reason about these in
the same formula. Numerical computations and reasoning on embedded hardware are essential
features of CPS, yet they present even more challenges for combining multiple types in a single
specification. During long, complex, numerical simulations having a monitor verify statistical
patterns in generated data will help detect errors or non-convergence in the early phases, saving
computational resources, manual inspection and inefficient postmortem analysis [14,15].

Previous works provide some options for special cases of this problem, with significant
complexity drawbacks. These largely center on two philosophies: higher-order logics reason-
ing over sets of formulas (instead of one formula combining different types), and annotations
to deal with multiple time granularities across formula variables, though not necessarily other
combinations of different types. Examples of distributed sets of specifications count on locally
evaluating sub-system-level synchronous [6] or asynchronous [5,26] signals; this set can

MLTL Multi-type 3

coordinate through a global formula evaluated over the local formulas [6]. HyperLTL focuses
on specifications over sets of formulas over signals of the same type [9], oppositely from this
work where we focus on constructing single formulas that seamlessly reason over signals of
different types.

The particular instance of different types in the form of input signals over different
time granularities that comprise parts of the same, single temporal logic specification arises
frequently in CPS; see [17] for a survey. Most previous works focus on developing well ex-
pressible languages to define temporally distributed specifications precisely. Again, this often
comes with higher-order reasoning (see for example [18]) and complexity penalties; e.g., [10]
introduces the notion of temporal universes and uses a set-theory representation of different
timescales to abstract notions of time granularities. Propositional Interval Temporal Logic
(PITL) adds chop (“;”) and project operators to LTL to increase expressivity for time granulari-
ties over infinite signals; another variation adds temporal relations like “just before” [11]. First-
Order Theory (FOT) enables writing time-granular specifications to account for continuous-in-
time events and relate them to discretized-in-time representations [3]. Other methods include
using automata to represent time-granularity [21,22] and using spider-diagram representations
for time-granular specifications [7], and a two-dimensional metric temporal logic that can
be potentially used to represent time granularities [4]. Table 1 collects this related work.

Time-granular logic Syntax elements Ref.
PITL empty, proj, “;”, □, ♢ [8]

Non standard FOT ∀, <e , <w, <1, ∃ [3]
ITL <, m, O, s, f etc. [1]

Euzenate’s extension 6×6 table of operators [11]
Automata representation Automata [21,22]

Spider diagrams Spider diagrams [7]
2D MTL internal eternal Li, Le etc. [4]

Monodic SOL Layered representation of FOT [18]
Table 1: Various time-granular specification languages and their syntax elements.

None of the existing solutions enable directly and intuitively specifying linear temporal
logic over finite signals containing different types. We need a logic designed for this use,
that enables direct specification of common CPS requirements, e.g., for supervision or signal
processing, without kludgey syntax that makes correct specifications hard to write, unintuitive
constructions that make specifications hard for CPS designers to validate, or introducing com-
plexity blow-ups that make verification techniques like model checking or runtime verification
intractable. Therefore, we build upon the popular logic MLTL to create MLTLM, a logic for
intuitively and directly expressing bounded temporal logic formulas whose variables may be of
different types, including different time granularities. The syntax of MLTLM matches that of
MLTL except for the single addition of a signal-type label on each temporal operator to signify
the output type of that operator. Figure 1 depicts an example MLTLM specification workflow.

We contribute: (1) a formal definition for the logic MLTLM (Mission-time Linear Tempo-
ral Logic Multi-type), including syntax and semantics (Sec. 3); (2) a translation of MLTLM
to MLTL with a proof of correctness, enabling use of existing MLTL automated reasoning
engine (Sec. 4.1); (3) an open-source implementation of a direct encoding of MLTLM for

4 Hariharan et al.

(a) Workflow when using LTL/MLTL

(b) Envisioned workflow using MLTLM
Fig. 1: Iteration workflow for CPS runtime verification of project requirements describing
the system and specification in simple lexical language. (a) Traditionally, modifications
to the system or specification at any level restarts the cycle. (b) We propose that project
management first verify a top view specification in a simple syntax while iteration of the
detailed specification is contained to system engineering. The automated assistant will provide
hints on suggesting the right projection between types.

MLTL Multi-type 5

runtime verification, released as an extension of the flight-certifiable R2U2 engine (Sec. 4.2).
We choose R2U2 because it is currently the only runtime verification engine that enables
real-time analysis of complex algorithms, such as those for numerical software verification,
in real time on embedded hardware [30,20].

Sec. 2 gives a prelude to the conventional single type temporal logic, MLTL, and gives
background on R2U2 – an industry-used runtime verification engine for CPS that we will
build upon to monitor MLTLM specifications. Sec. 3 defines our new logic, MLTLM, provid-
ing semantics, examples, properties, and use-cases. Sec. 4 discusses comparisons to a single
signal-type logic, and optimization opportunities for automated reasoning using MLTLM.
Finally, Sec. 5 discusses conclusions and scope for future work.

2 Preliminaries

This section formalizes signals and trajectories, overviews MLTL which is extended into
MLTLM in Sec. 3, and R2U2 which is adapted to monitor MLTLM in Sec. 4.2.

2.1 Signals and Trajectories

Definition 1. (Signal) A signal σ over an atomic proposition p is defined as the finite
sequence σ=a0,a1,... where σ[i]=ai∈{true,false} indicates whether p holds at the discrete
time instance i. All signals have a type, written σA for a signal σ with type A.

Definition 2. (Trajectory) A trajectory π over atomic propositions p0,...,pn is a set of signals,
i.e., π={σ0,σ1,...,σn} where σi is a signal over pi. πAp [i] refers to the ith value of the signal
of type A over atomic proposition p in π.

In Sec. 3, we impose that binary logical operators can only operate on signals of the same type.
We assume that types represent properties such as frequency that are homogeneous across a
type. Related work in linear temporal logic use “traces” or “computations” [2,9], which is typi-
cally described as a sequence of sets of atomic propositions. In contrast, we generalize “traces”
by allowing member signals to be of different types and call them collectively as a trajectory.

2.2 MLTL

MLTL is a variant of LTL [2] on finite signals with closed temporal bounds [29,30] on natural
numbers.

Definition 3. (MLTL Syntax [29]) The syntax of an MLTL formula φ over a set of atomic
propositions AP is recursively defined as:

φ := true | p | ¬φ1 | φ1∧φ2 | φ1UIφ2

where p∈AP, φ1 and φ2 are MLTL formulas, I :=[lb,ub] is a closed interval bound, such
that lb and ub are natural numbers such that lb≤ub.

Abstract Syntax Tree (AST) The AST representation of an MLTL formula has nodes of logical
operators and leaves of atomic propositions connected to represent the recursive structure of
the expression from Def. 3.

6 Hariharan et al.

Definition 4. (MLTL Semantics [29]) The evaluation of an MLTL formula φ on a trajectory
π where all signals have uniform type produces a signal σ defined recursively on the signals
σ1 and σ2 representing the evaluation of its child subformula(s) φ1 and φ2 respectively.

σ[i] :=



πp[i] if φ=p
¬σ1[i] if φ=¬φ1

σ1[i]∧σ2[i] if φ=φ1∧φ2

true iff |σ1|,|σ2|>(i+ub) and
∃j∈ [i+lb,i+ub] such that σ2[j]= true

and ∀k<j where k∈ [i+lb,i+ub],σ1[k]= true

if φ=φ1U[lb,ub]φ2

Other common operators are defined via equivalences, i. e., false ⇔ ¬true, future
♢Iφ⇔true UI φ, globally □Iφ⇔¬(♢I¬φ), and next ⃝φ⇔□[1,1]φ.

2.3 R2U2

The Realizable, Responsive, Unobtrusive Unit1 (R2U2) is an MLTL based RV engine for
flight mission systems [29] used in robotics [20], NASA drone aircraft [19,31], and is being
evaluated for use on the Lunar Gateway space station [12]. R2U2 is Realizable: implemented
on real hardware, Responsive: reports specification violation immediately, and Unobtrusive:
uses existing data sources instead of modifying the system to add instrumentation. R2U2
features specification reconfiguration and real-time performance with guaranteed memory
bounds to better support the needs of flight systems. We have developed our MLTLM verifica-
tion engine upon R2U2, which is an open-source RV engine with well-documented industrial
use to provide users with a seamless move to multi-type logic. The R2U2 based MLTLM
verification engine we develop upholds all existing guarantees of R2U2.

3 Mission-time Temporal Logic Multi-type (MLTLM)

We develop the foundations of MLTLM in this section. MLTLM is a lightweight extension
to MLTL that enables temporal reasoning over system trajectories composed of signals of
different types.

Definition 5. (MLTLM Syntax) The syntax of an MLTLM formula φ over a set of atomic
propositions AP is recursively defined as:

φ := true | p | ¬φ | φ1∧φ2 | φ1UJφ2

where p∈AP, φ1 and φ2 are MLTLM formulas, and J :=[lb,ub,A] is a finite interval bound
such that lb and ub are natural numbers, lb≤ub<∞, and A is a label indicating the signal
type over which an MLTLM temporal operator evaluates.

Notably, MLTLM syntax is MLTL syntax with signal types associated with temporal operators.

1 r2u2.temporallogic.org

r2u2.temporallogic.org

MLTL Multi-type 7

Definition 6. (MLTLM Semantics) The evaluation of an MLTLM formula φ on a trajectory
π produces a signal σ of type A defined recursively on the signals σ1 and σ2 representing the
evaluation of its child subformula(s) φ1 and φ2 respectively.

σA[i] :=


πAp [i] if φ=p
¬σA1 [i] if φ=¬φ1

σA1 [i]∧σA2 [i] if φ=φ1∧φ2

σA1 [i..]U[lb,ub]σ
A
2 [i..] if φ=φ1U[lb,ub,A]φ2

where σ[i..] is the subsequence of signal σ starting from discrete point i and all operators are
evaluated according to the rules of Def. 4.

Note that when evaluating the fourth case in Def. 6, the signal types produced by subformulas
φ1 and φ2 must be projected into signals of the type associated with the temporal operator.
Additional common operators like implication, disjunction, and globally are constructed by
standard equivalence relations as in MLTL, with all derived temporal operators inheriting the
type specifier on their interval bounds. If the relationship between types can be expressed as
a function that converts the type of signals, that function is called a projection.

Definition 7 (Projection). The projection function TB
A (σ

A) takes the signal σ of type A and
returns a new signal of type B.

We will examine several projection functions, however writing MLTLM formulas requires
only assurance their existence, not their definition; this provides a separation of concerns we
leverage to ease specification writing and linearize verification workflow. For example, con-
sider a formula φ specifying that φ1 should hold every hour for 10 hours, and φ2 should hold
every second for 100 seconds. In MLTLMφ could be written as□[0,9,hour]φ1∧□[0,99,second]φ2.
In MLTL, φwould need to be written assuming a monitor rate, say seconds, then specifier
would write □[0,0]φ1∧□[3600,3600]φ1 ∧□[7200,7200]φ1 ∧··· and □[0,99]φ2. The formula is
longer and embeds the relation between hours and seconds. If the specification must be evalu-
ated at a monitor rate of minutes instead, the canonical encoding must be updated by the specifi-
cation author as discussed in more detail in Sec. 1 (Fig. 1). In contrast, in MLTLM, the top view
specification remains the same even in the face of implementation details like evaluation rate.

3.1 Equivalent MLTLM Formula for Every MLTL Formula

For a formula naming at most one type, all properties that hold in MLTL hold in MLTLM,
i.e., ♢[lb,ub,A]φ⇔true U[lb,ub,A] φ, □[lb,ub,A]φ⇔¬(♢[lb,ub,A]¬φ) and so on. The following
claim expresses that formulas expressible in MLTL form a subset of formulas expressible
in MLTLM. The claim attests that there is no loss in using MLTLM compared to MLTL. The
transformation is simple, and the formula is, at worst, the same length, though potentially
much shorter in MLTLM, as demonstrated in Sec. 4.3.

Claim. An equivalent MLTLM formula of the same length exists for every MLTL formula,
and this translation is possible in constant time.

Proof. We can represent any MLTL formula as an MLTLM formula by appending a signal
type to the interval bound of every temporal operator. This follows from the definition of

8 Hariharan et al.

MLTLM. The formula length, being the total number of operators plus atomic propositions,
is not affected by appending a type name to the temporal operators. Hence the resultant
MLTLM formula is of the same length as the MLTL formula.

3.2 Evaluation of MLTLM Formula

Evaluation of an MLTLM formula on a trajectory requires signals for all atomic propositions.
Evaluating an MLTLM formula naming at most one type over a trajectory is equivalent to
evaluating MLTL formulas over a trajectory containing only the required signals.

With projection, a new signal of a different type can be derived from an existing signal in
the trajectory. For example, the return of a high-rate sensor can be down-sampled to match the
type of low rate sensor. This “derived signal” evaluation is where all signals are first projected
to a common type before evaluation. Using signals, types, and projection, we can evaluate
a formula with mixed types by considering each subformula to represent the signal of its own
evaluation and projecting where necessary as explained further in the next section.

Critically, operator semantics are defined for any type, but only when the input(s) and
output types match. The inputs to the temporal logic operator must be projected to the written
type in the operator’s bound if needed. Fundamentally, MLTLM formulas represent a directed
graph of data flow between domains of MLTL connected by projections.

Tutorial Example Application of the MLTLM Semantics (Def. 6) To help clarify how
the semantics in Def. 6 are applied, we consider the formula □[1,2,B](□[2,4,A]p). The global
(□) operator is a common unary temporal operator derived from the definition of U by the
equivalence relation □[lb,ub,A]φ⇔ ¬(true U[lb,ub,A] ¬φ). This is the same as adding the
following case to the MLTLM semantics:

σ[i] :=true iff σA1 [j]=true ∀j∈ [i+lb,i+ub], if φ=□[lb,ub,A]φ1.

Applying Def. 6, the evaluation of formula □[1,2,B](□[2,4,A]p) depends on the type of any
known signals for p and the desired output type. Let us consider generating a signal of type
B from the above formula, and that πAp is known for p. In Fig. 2a, the known signal for p, σA1 ,
is input to □[2,4,A] whose satisfaction signal, σA2 , is input to □[1,2,B], finally generating σB1
which meets the required output of type B.

Now let us consider another case with the same formula where we need an output signal
of type C, and know πBp . In Fig. 2b, evaluating the subformula □[2,4,A]p requires a signal
for p in type A per the semantics, but we only know p in type B. This implies a projection
TA
B (σ

B
1)=σ

A
1 before the result is input to□[2,4,A], generatingσA2 . Another type incompatibility

arises between σA2 and □[1,2,B], so it is again (implicitly) projected to a type B through
TB
A (σ

A
2)=σ

B
2 . Since the desired output type is C, there is one last projection TC

B (σ
B
3)=σ

C
1 .

3.3 Examples of Projections

Earlier in Sec. 3 we defined an abstract projection (Def. 7). This section will consider a couple
of useful projections and discuss some example specifications.

MLTL Multi-type 9

σB
2

□[1,2,B]

σB
1

TB
A

σA
2

□[2,4,A]

σA
1

p

(a)

σC
1 TC

B
σB
3

□[1,2,B]

σA
2

σB
2

TB
A

σA
1

□[2,4,A]

TA
B

σB
1

p

(b)
Fig. 2: Illustration of two possible evaluations of a given formula □[1,2,B](□[2,4,A]p)

.

Definition 8. (Modulo-Reduction Function) The function fs : σA → σB implements the
projection TB

A (σ
A) by modulo-reduction with positive integer stride s when:

fs(σ
A)=σB such that σB[i]=σA[i·s] (1)

The modulo-reduction function outputs every sth value from the input signal.

Definition 9. (Majority-Reduction Function) The function gs : σA → σB, implements the
projection TB

A (σ
A) by majority-reduction with positive integer stride s when:

gs(σ
A)=σB such that

σB[i]=

{
true if N0({j∈ [i·s,(i+1)·s] :(σA[j]=true)})≥⌊s/2⌋
false otherwise

(2)

where N0(·) is the set cardinality.

The majority-reduction function outputs the majority value of every s values of the input signal.

3.4 Example Specifications Across Timescales

We consider a few example specifications taken from literature on time-granularities [17,25],
and modify or extend them to the context of RV.

1. “Verify that John is present for 8 hours at a stretch each day for the next 6 days.”
This specification can be represented in MLTLM as:

□[0,5,day](♢[0,16,hour]□[0,7,hour]john-present) (3)

The specification says that eventually, from the 0th to the 16th hour, there exists an hour
such that John is present from the 0th to the 7th hour. The eventually operator has a time
going from 0 to 16, and the global operator from 0 to 7, and the total time adds to 0 to
23 hours, which is a 24 hour period (a day).
This specification is verified on a daily basis, based on the type of the root node of the
AST for Eq. (3), the □[0,5,day]. The day type must be projected from the hour type used
by the subformula. The satisfaction of the formula depends on the projection used to go
from the hourly type to the daily type.

10 Hariharan et al.

2. “Verify that for at least one day in a year the plant works every hour”

♢[0,364,day]□[0,23,hour]plant-works

3. “Verify that every day the plant is in production for some hours”

□[0,364,day]♢[0,23,hour]plant-production

4. “Verify that the plant is monitored by the remote system every minute of every hour for
the next 24 hours”

□[0,23,hour]□[0,59,minute]system-monitored

5. “On all days of the year, the plant works for at least 12 hours”
We represent this in MLTLM using the majority-reduction function (Def. 9), with
A≡hour and B≡day as

□[0,364,day]□[0,0,hour]plant-works

6. “Verify that the system deviates at most for a minute every hour for the next 24 hours.”
We can represent this in MLTLM by modifying the cardinality relation in Eq. (2) to “>1”
and using the resultant function with A≡hour and B≡day as the projection,

□[0,23,hour]□[0,0,minute]system-deviates

4 Equisatisfiable Formula in MLTL and an Implementation of an
MLTLM monitor with the Modulo-Reduction Projection

The previous section introduced MLTLM and demonstrated how it could simplify the work-
flow and specifications across timescales. We now illustrate space and time optimization
possibilities by implementing an MLTLM RV engine. The generic syntax and semantics of
MLTLM separates the specification from the signal type, i.e., the specification remains the
same irrespective of the signal type. It is apparent from the semantics (Def. 6) that the output
signal type is determined only in the fourth case with the temporal operator. For example, the
formula p∧q represents multiple output signal types depending on the trajectory types used
for p and q, whereas the formula □[0,0,A](p∧q) has a single output type A irrespective of the
trajectory types used for p and q. An implementation needs a single output type, and hence
we consider a subset of MLTLM formulas that have a temporal operator at the root of the
AST, and assume that the type on the root temporal operator is the desired output type.

Furthermore, to make the evaluation of an MLTLM formula complete, two more ingredi-
ents are essential, (a) the placement of projections in the AST of an MLTLM formula and (b)
defined projections between type signals. Consider the MTLTM formula, □[0,0,A](p∧q). Let
us assume that only a signal of type B is available from p and a signal of type C is available
from q, as denoted in Fig. 3a. From the semantics Def. 6, it is clear that a conjunction is al-
lowed only between signals of the same type, which implies that there are implicit projections
to match signal types in the conjunction as shown in Fig. 3b.

MLTL Multi-type 11

We have two (out of many) options here to match types, (a) to project to a common
signal type D at the conjunction, and then to a type A to match type in □[0,0,A] (Fig. 3b), and
(b) place a projection to type A at the conjunction, then a second projection is not needed
to match types in □[0,0,A] (Fig. 3c). While option (a) is of interest in the broader scope of
applications with MLTLM like signal processing, option (b) is the situation with the minimal
number of projections. The generalization for this minimal projection placement is to impose
that signals are projected to the type of the closest ancestor node with a type. All nodes in
the unique path connecting a node to the root of the AST are ancestor nodes of the node (the
node inclusive). In this example, the closest ancestor of the conjunction is □[0,0,A] whose type
is A. We further assume that all such projections exist to evaluate a formula.

□[0,0,A]

∧

σB

p

σC

q

(a)

□[0,0,A]

σA

TA
D

σD

∧
σD σD

TD
B

σB σC

p

TD
C

q

(b)

□[0,0,A]

σA

∧
σA σA

TA
B

σB σC

p

TA
C

q

(c)
Fig. 3: The evaluation of an MLTLM formula depends on the placement of projections to
match types in binary operators.

We consider only the modulo-reduction function (Def. 8) as it is not possible to cover
all scenarios in this paper. We develop a theory to derive equisatisfiable MLTL formula for an
MLTLM formula with a class of logical projections and then develop a translator based on it
with the modulo-reduction projection (Def. 8). We then compare the memory and time needed
to evaluate formulas using MLTLM and MLTL. In summary, we find that MLTLM reflects on
profound savings in memory compared to its closest single-type logic. The results presented
herein are only preliminary observations of optimization possibilities using MLTLM.

4.1 The Translator

Theorem 1. (Expressive Equivalence of MLTL and MLTLM with Logical Projections) Let F
be a projection expressible in MLTL, then F is a logical projection. Let A be a type and ψ be
an MLTL formula that outputs signals of type A. For every MLTLM formula φ such that for
every type t in φ there exists a chain of logical projections from t to A, the signal generated
by φ is equivalent to another signal generated by ψ.

12 Hariharan et al.

Proof Sketch. The full proof is available in supplementary material posted online2. We give an
example sketch over two signal types B and C related by a logical projectionF(σB)=σC. We
use the semantics of MLTLM (Def. 6) to prove by induction on the structure of the formula that
any MLTLM formula that has temporal operators with both typesB andC can be reduced to an
equisatisfiable formula all of whose temporal operators are of typeB. An MLTLM formula of a
single type can be reduced to an MLTL formula by merely removing the type from the formula.

We complete the proof by assuming that a formula of the form φ=φ1U[lb,ub,C]φ2 can be
equivalently expressed with type B in its AST root using the logical projection. For example,
we can show that the modulo-reduction projection (Def. 8) can be equivalently expressed as
an MLTL formula without a projection to type C using the function p(φ) where

p(φ)=⃝lb
B (φ2

∨(φ1∧⃝s
Bφ2)

∨(φ1∧⃝s
Bφ1∧⃝2s

B φ2)

∨(φ1∧⃝s
Bφ1∧⃝2s

B φ1∧⃝3s
B φ2)

...

∨(φ1∧⃝s
Bφ1∧⃝2s

B φ1∧⃝3s
B φ1 ··· ∧⃝(m−1)s

B φ1∧⃝ms
B φ2)),

(4)

where ⃝B=□[1,1,B] is the next operator (and hence, ⃝s
B=□[s,s,B]), andm=⌊(ub−lb)/s⌋.

We then extend this to all cases in the semantics (Def. 6). Thus, any MLTLM formula φ with
mixed signal types B and C has an equisatisfiable formula q(φ), where the entire formula
has a single type, B, defined recursively by

q(φ):=


φ, if φ has only one type, B in the entire formula,
p(q(φ1)U[lb,ub,C]q(φ2)), if φ=φ1U[lb,ub,C]φ2,

¬q(φ1), if φ=¬φ1,

q(φ1)∧q(φ2), if φ=φ1∧φ2.

(5)

It is straightforward to extend this analysis to multiple types that have transitional chain of
connected projections. We showed that we could derive an equisatisfiable formula verifiable
in the image type for any MLTLM formula when using the logical projections. We implement
a translator from MLTLM to MLTL using the theory discussed.

We developed three translators from MLTLM to MLTL based on the recursive formula
Eq. 5. The three translators are based on succinct and expanded versions of Eq. 4 the most
succinct (to our best capability) being translator 3, and the most expanded being translator
1. The translator’s details and proof of correctness will be reported elsewhere in the interest
of space. We confirm, however, that verdicts from the three translators on a well-established
MLTL engine (R2U2 [20]) and its extended MLTLM monitor developed by us (discussed
in Sec. 4.2) produce consistent outputs for the same inputs with more than 70 randomly
generated formulas.

2 http://temporallogic.org/research/NSV2022/

http://temporallogic.org/research/NSV2022/

MLTL Multi-type 13

4.2 An Efficient MLTLM Engine

We implement an RV engine for specifications in MLTLM on top of R2U2 (see Sec. 2, and
[20]). Certain notes on how specifications are written out for verification using R2U2 are
relegated to supplementary material online3. We skip the details of the implementation in the
interest of space and report it elsewhere. We summarize the implementation briefly.

As we mentioned many times in this article, if a sensor data is only of interest every
hour, then the second-to-second information can be dropped out; and the modulo-reduction
function (Def. 8) does this operation. The MLTLM engine has added projection operators
(see Def. 7) at appropriate places according to the semantics of MLTLM (Def. 6) using the
closest ancestor type projection discussion in Sec. 4 (Fig. 3). The modulo-reduction projection
operator drops the appropriate signal values not needed in evaluating a formula and reports
the output signal type corresponding to the type in the root of the AST.

4.3 Optimization Results

In Sec. 3.1 we showed that every MLTL formula could be expressed in MLTLM in the same
length. This section analyzes how long are the intuitive translations to MLTL compared to
MLTLM. We do not claim rigorous proof on the shortest possible formula length but rather
compare the most intuitive and succinct translations. We note that the translations contain
expressions of the form (see Eq. 4),

φ1∧⃝s
Bφ1∧⃝2s

B φ1∧⃝3s
B φ2,

which to the best of our knowledge cannot be made any shorter in LTL and MLTL [32].
We randomly draw MLTLM formulas using the procedure in [13] and plot the length

of the shortest intuitive MLTL translations. The randomly drawn formulas are parametrized
by the probability of drawing a temporal operator (P), the maximum difference between the
lower and upper bounds (M), and the maximum signal length (T). We will fixM=T=6
in our study here. Furthermore, the memory and time also depends on stride, s of the modulo-
reduction function (see Eq. (1)). In real systems specifications may reason over say, seconds,
minutes, hours and days, which correspond to s=60, and 24. However, as we mentioned
previously, we are reporting preliminary observations on optimization possibilities, and we
use four signal types, which we will call A, B, C and D, where (see Eq. (1) for fs(σ)), with

f2(σ
A) = σB, f3(σ

B) = σC, f4(σ
C) = σD,

with stride lengths s=2,3,4. Note that the memory savings will be much larger with a larger
stride like s=60 (e.g., from second to minute).

Fig. 4a shows the cumulative formula length with randomly drawn formulas. At P=0.5,
the three translators produce MLTL formulas of nearly the same length (the dotted, dashed,
and dashed and dotted lines). However, Translator 3 performs slightly better with shorter
formula lengths. In contrast, the formula lengths of the MLTLM formulas are substantially
smaller. Hence, there is no loss in using MLTLM in comparison to MLTL (see Sec. 3), but
using MLTLM may result in much smaller and more intuitive formulas depending on the
projection function.

3 http://laboratory.temporallogic.org/research/NSV2022

http://laboratory.temporallogic.org/research/NSV2022

14 Hariharan et al.

(a) (b)
Fig. 4: (a) Cumulative formula length with the number of randomly drawn formulas with
P=0.5, and (b) mean formula length against the probability of choosing a temporal operator.

(a) (b)
Fig. 5: Cumulative memory (left) and time (right) needed to verify random MLTLM formulas
from the benchmark set in Sec. 4 using an equivalent MLTL formula (translator) compared to
an MLTLM engine with a Modulo-Reduction projection operator in R2U2.

Fig. 4b shows the mean formula length (averaged over 60 random formulas) by varying
the probability of the temporal operator. P=0 corresponds to no temporal operators, and in
that case, the translators and the MLTLM formula perform nearly equally well. This is ex-
pected – if the formula contains mere propositional logic, the formula should be independent
of the temporal specification language. However, on close observation, the MLTLM formula
at P =0 is slightly longer. This is because in MLTL there is only one signal type, hence
there is no need for a output signal type specifier, whereas in MLTLM, a proposition (say,
p∧q, p,q∈AP) represents a family of outputs of different types. We always use a temporal
operator at the start of any formula (as in □[0,0,B](p∧q) in the place of p∧q), and this adds
to excess length of an MLTLM formula compared to an MLTL formula with propositions.
However, propositions like p∧q are valid MLTLM formulas, but verification of the formula
needs an output-type identifier.

MLTL Multi-type 15

On increasing the probability of choosing a temporal operator, the equisatisfiable formulas
in MLTL become significantly longer owing to the expansion to the base type as discussed
in Sec. 4.1. Fig. 5 shows the estimated resource and time requirements on hardware. The
memory to evaluate a formula is statically assigned in R2U2 [20] as dynamic memory is
often not permitted in flight software. Hence, we compare the amount of static memory that
needs to be assigned for equisatisfiable formulas in MLTLM and (translated) MLTL (Fig. 5a).
Similarly, the time taken for formula evaluation is directly proportional to the number of nodes
created in the AST. We call the nodes in the AST as observers (as seen in the Y axis labels
of Fig. 5b). We see that equisatisfiable formula require much lesser memory in MLTLM than
MLTL (Fig. 5a). Similarly, the evaluation time is also much faster for MLTLM as it needs
much lesser observers (Fig. 5b).

We end this section with a few remarks. We considered random formulas in this section,
and they may not be true representatives of real specifications that may have different results on
memory and time savings (Fig. 5). Nonetheless, the results show that there is great opportunity
to have short intuitive formulas that encode timescales directly in the formula to simplify the
workflow (Fig. 1), and in addition, an optimally configured RV engine for MLTLM is likely
to have profound memory savings making it more suitable for resource constrained hardware.

5 Conclusion

Writing specifications naturally needs reasoning across multiple signal types, be it signals
coming from different sensors at different rates, or belonging to observers in parallel universes
(distributed systems), or having a mix of continuous and discrete signals (hybrid systems). We
developed a multi-type logic to express such specifications, and then explored an application
to time granularities. As discussed, this serves multiple purposes: 1) for the user, specifications
are easy to write, 2) the theoretical satisfaction in different types is defined unambiguously, and
3) implementations can better utilize resources when compared with a single signal-type logic.
Moreover, we expect that MLTLM will simplify the workflow by keeping the syntax simple
and accessible, and postponing the nuances into the projection function. More importantly,
MLTLM separates the specification from signal type. For example, let us suppose that a
pressure sensor is changed in the Lunar Gateway, and it generates data in a different rate than
the old sensor, or perhaps in a different unit like Pascals in the place of atmospheric pressure.
Specifications for a single type logic would have to be changed to account for the signal type.
MLTLM side-steps this process: The signal type will not affect the specification in any manner.
In the future, we plan to have an automated assistant, that will allow a user to choose different
projections to use for different contexts in specifications, (like “at least”, “at most”, “only once”
etc.), and will also inform the user about the amount of memory he will need to dedicate/save
on the hardware (the memory needed may vary based on the type of projection). This will allow
the industrial verification community to seamlessly move to a time-granular logic. We will also
consider human authored MLTLM specifications on real systems to get a better perspective
on optimization opportunities. Lastly, the MLTLM monitor built upon R2U2 was validated
across a regression suite of specifications and trajectories, but the current implementation can
be improved to have tighter bounds on memory usage, which needs further investigation.

16 Hariharan et al.

References

1. Allen, J.F., Hayes, P.J.: A common-sense theory of time. In: Proceedings of the 9th International
Joint Conference on Artificial Intelligence - Volume 1. p. 528–531. IJCAI’85, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1985)

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
3. Balbiani, P.: Time representation and temporal reasoning from the perspective of non-standard

analysis. In: Proceedings of the Eleventh International Conference on Principles of Knowledge
Representation and Reasoning. p. 695–704. KR’08, AAAI Press (2008)

4. Baratella, S., Masini, A.: A two-dimensional metric temporal logic. Mathematical Logic Quarterly
66(1), 7–19 (2020). https://doi.org/https://doi.org/10.1002/malq.201700036

5. Bataineh, O., Rosenblum, D.S., Reynolds, M.: Efficient decentralized LTL monitoring framework
using tableau technique 18(5s) (2019)

6. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012: Formal Methods. pp. 85–100. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Bottoni, P., Fish, A.: Policy specifications with timed spider diagrams. In: 2011 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 95–98 (2011).
https://doi.org/10.1109/VLHCC.2011.6070385

8. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of finite interval
temporal logic with projection. Journal of Logic and Computation 13(2), 195–239 (2003).
https://doi.org/10.1093/logcom/13.2.195

9. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal
logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Principles of Security and Trust. pp.
265–284. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

10. Clifford, J., Rao, A.: A simple, general structure for temporal domains (1986)
11. Cohen-Solal, Q., Bouzid, M., Niveau, A.: An algebra of granular temporal relations for qualitative

reasoning. In: Proceedings of the 24th International Conference on Artificial Intelligence. p.
2869–2875. IJCAI’15, AAAI Press (2015)

12. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-time
system architecture. In: AIAA Scitech 2021 Forum. p. 0566 (2021)

13. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic.
In: International Conference on Computer Aided Verification. pp. 249–260. Springer (1999)

14. Dinh, M.N., Abramson, D., Jin, C.: Runtime verification of scientific
codes using statistics. Procedia Computer Science 80, 1473–1484 (2016).
https://doi.org/https://doi.org/10.1016/j.procs.2016.05.468, international Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA

15. Dinh, M.N., Trung Vo, C., Abramson, D.: Tracking scientific simulation using online time-series
modelling. In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Com-
puting (CCGRID). pp. 202–211 (May 2020). https://doi.org/10.1109/CCGrid49817.2020.00-73

16. Donzé, A.: On signal temporal logic. In: Legay, A., Bensalem, S. (eds.) Runtime Verification. pp.
382–383. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

17. Euzenat, J., Montanari, A.: Time granularity. Handbook of Temporal Reasoning in Artificial
Intelligence (January 2005)

18. Franceschet, M., Montanari, A., Peron, A., Sciavicco, G.: Definability and decidability of
binary predicates for time granularity. Journal of Applied Logic 4(2), 168–191 (Jun 2006).
https://doi.org/10.1016/j.jal.2005.06.004

19. Geist, J., Rozier, K.Y., Schumann, J.: Runtime Observer Pairs and Bayesian Network Reasoners
On-board FPGAs: Flight-Certifiable System Health Management for Embedded Systems. In:
Proceedings of the 14th International Conference on Runtime Verification (RV14). vol. 8734, pp.
215–230. Springer-Verlag (September 2014)

https://doi.org/https://doi.org/10.1002/malq.201700036
https://doi.org/10.1109/VLHCC.2011.6070385
https://doi.org/10.1093/logcom/13.2.195
https://doi.org/https://doi.org/10.1016/j.procs.2016.05.468
https://doi.org/10.1109/CCGrid49817.2020.00-73
https://doi.org/10.1016/j.jal.2005.06.004

MLTL Multi-type 17

20. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online runtime
verification for fault disambiguation on Robonaut2. In: Proceedings of the 18th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS). Lecture Notes in
Computer Science (LNCS), vol. 12288, pp. 196–214. Springer, Vienna, Austria (September 2020)

21. Lago, U.D., Montanari, A., Puppis, G.: Compact and tractable automaton-based repre-
sentations of time granularities. Theoretical Computer Science 373(1), 115–141 (2007).
https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.014

22. Lago, U.D., Montanari, A., Puppis, G.: On the equivalence of automaton-based representations of
time granularities. In: 14th International Symposium on Temporal Representation and Reasoning
(TIME’07). pp. 82–93 (2007). https://doi.org/10.1109/TIME.2007.56

23. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for Mission-time LTL. In: Proceedings
of 31st International Conference on Computer Aided Verification (CAV). LNCS, vol. 11562, pp.
3–22. Springer, New York, NY, USA (July 2019)

24. Luppen, Z., Jacks, M., Baughman, N., Hertz, B., Cutler, J., Lee, D.Y., Rozier, K.Y.: Elucidation
and Analysis of Specification Patterns in Aerospace System Telemetry. In: Proceedings of the 14th
NASA Formal Methods Symposium (NFM 2022). Lecture Notes in Computer Science (LNCS),
vol. 13260. Springer, Cham, Caltech, California, USA (May 2022)

25. Montanari, A., Ratto, E., Corsetti, E., Morzenti, A.: Embedding time granularity in logical
specifications of real-time systems. Proceedings. EUROMICRO ‘91 Workshop on Real-Time
Systems pp. 88–97 (1991)

26. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifications in
distributed systems. In: 2015 IEEE International Parallel and Distributed Processing Symposium.
pp. 494–503 (2015)

27. Okubo, N.: Using R2U2 in JAXA program. Electronic correspondence (November–December
2020), series of emails and zoom call from JAXA to PI with technical questions about embedding
R2U2 into an autonomous satellite mission with a provable memory bound of 200KB

28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.)
Formal Modeling and Analysis of Timed Systems. pp. 1–13. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

29. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system
health management of real-time systems. In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes
in Computer Science (LNCS), vol. 8413, pp. 357–372. Springer-Verlag (April 2014)

30. Rozier, K.Y., Schumann, J.: R2U2: Tool overview. In: Proceedings of International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CUBES). vol. 3, pp. 138–156. Kalpa Publications, Seattle, WA, USA (September 2017)

31. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A Tool Exhibition
Report. In: Proceedings of the 16th International Conference on Runtime Verification (RV15).
Springer-Verlag, Madrid, Spain (September 2016)

32. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1), 72–99 (1983)

https://doi.org/https://doi.org/10.1016/j.tcs.2006.12.014
https://doi.org/10.1109/TIME.2007.56

	MLTL Multi-type (MLTLM): A Logic for Reasoning about Signals of Different Types

