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Abstract. Mission-time Linear Temporal Logic (MLTL) is a popular
variant of Linear Temporal Logic that introduces discrete, �nite inter-
val time bounds on the temporal operators. MLTL speci�cations rea-
son about system behaviors encoded as �nite traces that track values of
key variables over time. The language of an MLTL speci�cation is all
the traces that satisfy the speci�cation. A natural question is: Given an
MLTL speci�cation φ, can we �nd a set of related formulas ψ1, . . . , ψn so
that the language of φ is the disjoint union of the languages of ψ1, . . . , ψn

(i.e., the ψ's partition the language of φ)? Answering this is not only the-
oretically interesting, but could also facilitate veri�cation, as language
partitioning is useful for creating benchmark suites or optimizing model
checking algorithms. We present an algorithm for MLTL language parti-
tioning and prove it correct. Because the proofs are technically intricate,
we formalize them in the theorem prover Isabelle/HOL to ensure cor-
rectness. We automatically obtain an implementation of our algorithms
via code generation from Isabelle/HOL and conduct an experimental
evaluation to demonstrate the practicality of using our algorithms.

Keywords: Mission-time Linear Temporal Logic · Language · Partition
· Isabelle/HOL

1 Introduction

Partitioning is an essential capability for utility (ability to solve problems, e.g.,
via decomposition into subproblems), scalability (ability to solve complex, real-
istic problem instances), and parallelization (ability to utilize modern multi-core
architectures). Partitioning of the transition relations in automata initially en-
abled BDD-based model checking to scale to large state spaces. Speci�cally, par-
titioning operations for LTL, e.g., the characteristic function of an LTL formula,
made possible the �rst symbolic model checking algorithm for LTL [2]. Conse-
quently, partitioning underlies other BDD-based veri�cation algorithms such as
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⋆⋆ These authors contributed equally to this work.
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Boolean satis�ability [26], and Boolean synthesis [17,30]. Recent work focuses
on partitioning techniques for LTLf (LTL over �nite traces) as a fundamental
capability for synthesis [31,11].

Techniques for partitioning of properties described by temporal logics in-
clude tree-based classi�ers to separate scenarios for Metric First-Order Tempo-
ral Logic (MFOTL) [29] and First Order Temporal Binding Logic (CMFTBL)
[29]. Aimed at assessing coverage, [10] de�nes Inductive Validity Cores (IVCs)
for safety properties to measure overlap of model elements and [9] de�nes a tree-
based ontology of fault elements. Identifying logical dependencies in subformulas
of conjunctions in LTL dramatically improved model-checking performance [7].
A�nity-based property partitioning relies on Hamming distance of support vari-
able bitvectors to separate properties [1] and enables e�cient strategy for parallel
veri�cation[5]. Strikingly, [6] highlights the impact of creating disjoint property
subsets in industrial hardware veri�cation tasks; here a�nity-based partitioning
minimizes redundant computation.

Driven by these studies, we seek e�cient disjoint language partitioning for
the logic Mission-time Linear Temporal Logic (MLTL). While e�cient model
checking algorithms, parallel veri�cation, synthesis, and coverage are not yet de-
�ned for MLTL, partitioning algorithms could aid in their facilitation, as well
as aid in optimizing existing techniques for MLTL satis�ability [22], MAX-SAT
[13], benchmark generation [21], and requirements analysis [8]. The Formal Re-
quirements Elicitation Tool (FRET) [25] accepts MLTL; a PVS library provides
compositional proofs about MLTL language translation [3]. However, there are
more extensive MLTL libraries in Isabelle/HOL [20,34]; we build on those to
formalize a new partitioning algorithm. Our formalization derives from a new
de�nition of co-formulas: for any MLTL formula φ, we can derive a set of co-
formulas that disjointly capture the language accepted by φ.

Motivating Example In the context of benchmark generation, consider an exam-
ple requirement �The spacecraft will deploy the solar array within 10 minutes,
or the spacecraft will remain in low-power mode.� This can be expressed as the
MLTL formula F[0,10]p ∨ G[0,10]q, where p becoming true indicates a successful
solar array deployment, and q indicates the spacecraft is in low-power mode.
Requirements of this structure pose a challenge when trying to create bench-
marks for testing because the left clause is satis�ed by many more traces than
the right clause. Randomly sampling traces is unlikely to �nd a trace that sat-
is�es G[0,10]q. However, de�ning co-formulas that capture the disjoint paths to
formula satisfaction leads to better test coverage.

Contributions (1) We de�ne, for the �rst time, co-formulas and language par-
titioning for MLTL. (2) We design algorithms for conducting language parti-
tioning. (3) We formally prove the correctness of our de�nitions and algorithms
in Isabelle/HOL; our formalization is approximately 5700 lines of code and is
available online.3 (4) From this library, we generate a veri�ed implementation

3 https://drive.google.com/drive/folders/1tj5ulu2M5ksGHSD_

V55K4f-UPwIGPSR9?usp=drive_link

https://drive.google.com/drive/folders/1tj5ulu2M5ksGHSD_V55K4f-UPwIGPSR9?usp=drive_link
https://drive.google.com/drive/folders/1tj5ulu2M5ksGHSD_V55K4f-UPwIGPSR9?usp=drive_link
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of the language partitioning algorithms. (5) An experimental evaluation of the
implementation empirically demonstrates the utility of this tool.

The paper proceeds as follows: Section 2 reviews MLTL and the existing
Isabelle/HOL library. Section 3 introduces language partitioning and presents
the algorithms for performing language partitioning on an MLTL formula. Sec-
tion 4 discusses the formalization in Isabelle/HOL. We conduct an evaluation of
language partitioning as a sampling technique and compare it against existing
techniques in Section 5 before concluding in Section 6.

2 Mission-time Linear Temporal Logic

Syntax and Semantics. MLTL [27] is a �nite variant of LTL which places closed-
interval integer bounds on the temporal operators. The intervals take the form
[a, b] where a, b ∈ N and 0 ≤ a ≤ b. MLTL formulas φ and ψ are syntacti-
cally de�ned over a �nite set of atomic propositions AP. With p ∈ AP as a
propositional variable, the syntax of φ and ψ is given by the grammar:

φ,ψ := true | false | p | ¬φ | φ∧ψ | φ∨ψ | F[a,b]φ | G[a,b]φ | φU[a,b]ψ | φR[a,b]ψ

Here, F ,G,U ,R are the temporal operators Future, Globally, Until, and Release
respectively. 4 MLTL formulas reason over �nite traces, alternatively called sig-
nals or computations. Each trace π represents a discrete sequence of time steps
and truth assignments to the propositional variables at each time step. Formally,
a trace π of length |π| = m is a sequence π = π[0], π[1], . . . , π[m−1], where each
π[i] ⊆ AP is the atomic propositions true at time step i. We denote the su�x
of a trace from time i as πi = π[i], π[i+ 1], . . . , π[m− 1].

De�nition 1 (MLTL Semantics). A trace π satis�es an MLTL formula φ,
written π ⊨ φ, de�ned recursively as follows:

π |= p i� p ∈ π[0]

π |= φ ∧ ψ i� π |= φ and π |= ψ

π |= ¬φ i� π ̸|= φ

π |= φ ∨ ψ i� π |= φ or π |= ψ

π |= F[a,b]φ i� |π| > a and ∃i ∈ [a, b]. πi |= φ

π |= G[a,b]φ i� |π| ≤ a or ∀i ∈ [a, b]. πi |= φ

π |= φ U[a,b]ψ i� |π| > a and ∃i ∈ [a, b]. (πi |= ψ and ∀j ∈ [a, i− 1]. πj |= φ)

π |= φ R[a,b]ψ i� |π| ≤ a or (∀i ∈ [a, b]. πi |= ψ) or ∃j ∈ [a, b− 1]. (πj |= φ and

∀k ∈ [a, j] πk |= ψ)

De�nition 2 (Language). The language of φ, denoted L(φ), is de�ned as the
set of all traces that satisfy φ. That is, L(φ) = {π | π ⊨ φ}.

All traces in MLTL are �nite, but there is no �xed upper bound on the length of
traces. L(φ) is then in�nitely large, as there are in�nitely many traces of arbi-
trary length; accordingly, we de�ne the restricted language of an MLTL Formula.

4 Notably, MLTL discards the Next (X ) operator, because it is equivalent to F[1,1].
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De�nition 3 (Restricted Language). The restricted language of an MLTL
formula, Lr(φ), is de�ned as Lr(φ) = {π | (|π| ≥ r ∧ π ⊨ φ)}. That is, Lr(φ) is
the set of all traces of length at least r which satisfy φ.

Often, it is useful to set the bound r to the worst-case propagation delay
(wpd) of the formula φ [18,33]. Intuitively, the wpd of an MLTL formula φ
is the number of time steps over which φ reasons; for instance, the formula
F[0,10](G[0,3] p) reasons over 10 + 3 + 1 = 14 time steps.

2.1 MLTL in Isabelle/HOL

Our formalization builds on a pre-existing Isabelle/HOL MLTL library [20]. This
library formalizes MLTL and its various properties, including a formula progres-
sion algorithm for MLTL (but we only build upon the core MLTL library). We
add to a growing body of work of formalized MLTL algorithms (see [32]), but this
work is unique in that we develop theory directly in tandem with formalization.

MLTL formulas are de�ned as the custom datatype 'a mltl 5 where 'a

denotes an arbitrary type in Isabelle/HOL, allowing �exibility for what types
atomic propositions take on in various use cases. Traces are encoded with type
'a set list, i.e., list of sets of some arbitrary type 'a. The i-th state of a trace
π is denoted π!i, where ! indexes a list in Isabelle/HOL. The su�x of a trace
πi is denoted drop i π, which drops the �rst i elements of π. The function
semantics_mltl encoding MLTL semantics has type 'a set list ⇒ 'a mltl ⇒
bool. We use this to formalize the restricted language of an MLTL formula:

de�nition language_mltl_r :: "['a mltl, nat]⇒'a set list set"

where "language_mltl_r φ r = {π. semantics_mltl π φ ∧ length π ≥
r}"

langauge_mltl_r takes as input an MLTL formula φ and restriction length
r, and de�nes the set of all traces π of length ≥ r that satisfy φ.

3 Language Partitioning for MLTL

Armed with the de�nition of the language of an MLTL formula, we return to the
question posed in the abstract: �Can we �nd a set of related formulas to describe
the language of an MLTL formula?�

A natural approach is to consider how the language of an MLTL formula
can be decomposed into into related formulas, which we call co-formulas, that
together capture the language of the original formula. That is, the union of the
language of all the co-formulas is the language of the original formula, restricted
up to the wpd of the original formula.

De�nition 4 (Co-formula). For MLTL formulas φ and ψ, ψ is a co-formula
of φ if Lr(ψ) ⊆ Lr(φ), where r is the wpd of φ.

5 We will use this font to display snippets of Isabelle/HOL code.
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De�nition 5 (Language decomposition and partition). We de�ne a lan-
guage decomposition of an MLTL formula φ as a set of its co-formulas {ψ1, ..., ψn}
such that

⋃n
i=1 Lr(ψi) = Lr(φ) for r = wpd(φ).

If additionally, ∀i ̸= j. Lr(ψi) ∩ Lr(ψj) = ∅, i.e., the languages of the
ψi's are disjoint, then {ψ1, ..., ψn} is de�ned to be a language partition of φ.
Consequently, any language partition of φ is a language decomposition of φ but
not vice-versa.

Fig. 1: Here we visualize the notion
of language partition. The languages
of the co-formulas φ1, φ2, φ3 parti-
tion the co-domain of the language
of the original formula φ.

Note that the notion of a co-formula
is not the same as the standard notion
of a subformula. A subformula is a clause
that appears as a part of a larger for-
mula, so the de�nition of is purely syn-
tactic whereas our notion of a co-formula
is semantic in nature. To exemplify this
point, the language of a subformula is not
necessarily a subset of the language of the
original formula (in an extreme case, it
may even be the complement of the lan-
guage of the original formula: the lan-
guage of True is the complement of the
language of ¬True).

Ideally, co-formulas in a language partition should capture meaningful frag-
ments of the original formula's semantics. Consider the liveness property cap-
tured by the formula φ = F[3,10]ψ that asserts ψ should happen between times
3 and 10. We can characterize satisfying traces of φ by the �rst time in which
ψ holds, for instance in the beginning, middle, or end of the interval (i.e., say
corresponding to [3, 4], [5, 8], [9, 10], respectively). We may similarly characterize
the formula φ U[a,b] ψ in terms of the �rst place in [a, b] where ψ holds (similarly
φ R[a,b] ψ in terms of the �rst place in [a, b] where φ holds). To formally capture
this intuition, we introduce the combinatoric notion of an integer composition. A
composition of an integer n is an ordered list of positive integers n1, ..., nk such
that n =

∑k
i=1 ni. We formalize this in Isabelle/HOL as follows: 6

de�nition is_composition :: "[nat, nat list] ⇒ bool"

where "is_composition n L = ((∀ i∈set L. i>0)∧(sum_list L=n))"

We then de�ne a composition of an interval [a, b] as a composition of b −
a+ 1, the number of time steps in the interval. Each summand in the composi-
tion of [a, b] corresponds to a sub-interval of [a, b] of that length. For example,
L = 2, 4, 2 is a composition of the interval [3, 10] producing the sub-intervals
[3, 4], [5, 8], [9, 10]. We visualize this in Fig. 3.

We use this notion of integer composition to construct language decom-
positions and language partitions. For example, to construct a language de-

6 Integer compositions has been formalized in Isabelle/HOL [14], but the previous
formalization primarily focuses on combinatorial properties of integer compositions.
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composition of our familiar example F[3,10]φ with interval composition 2, 4, 2,
consider the formulas ψ1 = F[3,4]φ, ψ2 = (G[3,4]¬φ) ∧ (F[5,8]φ), and ψ3 =
(G[3,8]¬φ) ∧ (F[9,10]φ). ψ1 requires φ to hold in the interval [3, 4], ψ2 requires
that φ does not hold before time 5 and hence φ holds for the �rst time in the
interval [5, 8]. ψ3 requires that φ does not hold before time 8 and hence φ �rst
holds in the interval [9, 10]. It is clear that any trace π satis�es φ i� π satis�es
one of the ψi's. Furthermore, the ψi's are disjoint, and thus {ψ1, ψ2, ψ3} is a
language partition of φ.

We de�ne an algorithm LP to compute a language decomposition for an
MLTL formula with arbitrary interval compositions. This algorithm also con-
structs a language partition for the MLTL formula, but only for a particular
shape of interval compositions.

In Isabelle/HOL, we introduce the notion of interval compositions by extend-
ing the previous mltl datatype. We de�ne the datatype mltl_ext, which aug-
ments the Future, Until, and Release temporal operators of the mltl datatype
with an additional argument of type nat list, representing the desired integer
composition of the operator's interval. For instance, the formula F[3,10]φ with in-
teger composition [2, 4, 2] is represented as Future_mltl_ext φ 3 10 [2, 4, 2].
We do not augment the Global operator because the LP algorithm uses a �xed
integer composition for the Global case (see Section 3.2 for technical details).

Now, we de�ne the language partitioning function LP that computes the
set of co-formulas which forms the language partition of an input formula φ of
type mltl_ext. We formalize (see Sec. 4) that LP always produces a language
decomposition of φ. However, in order to produce a language partition, LP
requires compositions to be lists of all 1's.

3.1 Language Partitioning for MLTL

We provide a high level algorithmic overview of LP , the details of which are
available in the formalization. LP recurses on the structure of the input MLTL
formula, returning a set of co-formulas at each recursive call; thus we �rst de�ne
operations on sets of co-formulas. For MLTL formula φ, we use Dφ to denote a
language decomposition of φ; later we set Dφ equal to the output of LP on φ and
prove in our formalization that LP always computes language decompositions
and, under certain interval compositions shapes, computes language partitions.

3.1.1 MLTL Set Operations We de�ne the operations ∧̇, Ḟ , Ġ, U̇ , Ṙ, each
operating on sets of co-formulas. We also provide intuition for how these opera-
tions use sets of co-formulas that are language decompositions of a subformula
to build a language decomposition of a larger formula. However, we refer the
interested reader to our formalization for how we made these intuitions rigorous.

∧̇(Set And) Consider MLTL formulas φ and ψ, and their respective language
decompositions Dφ and Dψ. We seek to use Dφ and Dψ to compute a language
decomposition of φ ∧ ψ. We de�ne that
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Dφ ∧̇ Dψ = {x ∧ y | x ∈ Dφ and y ∈ Dψ}

and illustrate an example of the ∧̇ operator in Fig. 2. Intuitively, each x ∈
Dφ and y ∈ Dψ represents one possible way to satisfy φ and ψ, respectively,
and hence Dφ ∧̇ Dψ computes all the ways to satisfy φ ∧ ψ. A trace π sat-
is�es φ i� π satis�es some x ∈ Dφ, and π satis�es ψ if and only if π sat-
is�es some y ∈ Dψ. Thus, Dφ ∧̇ Dψ is a language decomposition of φ ∧ ψ.

Fig. 2: For Dφ = {φ1, φ2} and Dψ =
{ψ1, ψ2}, Dφ∧̇Dψ = {φ1 ∧ ψ1, φ1 ∧
ψ2, φ2 ∧ ψ1, φ2 ∧ ψ2}.

Ḟ(Set Future) For a language decompo-
sition Dφ of MLTL formula φ, Ḟ[a,b]Dφ

applies the Future operator to each ele-
ment of Dφ. That is, we de�ne Ḟ[a,b]Dφ =

{F[a,b]x | x ∈ Dφ}. Again Ḟ[a,b]Dφ is
a language decomposition of F[a,b]φ; this
is because a trace π satis�es F[a,b]φ i�
φ holds at some point in [a, b], i� some
x ∈ Dφ holds at that point in [a, b].

Ġ(Set Globally) For language decomposi-
tion Dφ of MLTL formula φ, we actually

cannot de�ne Ġ[a,b]Dφ in a similar man-

ner as Ḟ . Suppose we were to try de�ning
Ġ[a,b]Dφ to apply G[a,b] to each element of Dφ. Then Ġ[a,b]Dφ does not capture
the full language of G[a,b]φ. If φ = p ∨ q where p, q ∈ AP, the set Dφ = {p, q}
is a language decomposition of φ. However if a < b, G[a,b](p ∨ q) is not equiv-
alent to (G[a,b]p) ∨ (G[a,b]q). A simple counterexample for a = 0 and b = 1 is
the trace π = {p}, {q}, which satis�es G[0,1](p ∨ q) but not (G[0,1]p) ∨ (G[0,1]q).
The fact that equivalence only holds for a = b motivates the following de�nition:
Ġ[a,b]Dφ = {

∧b
i=a G[i,i]xi | ∀i ∈ [a, b].xi ∈ Dφ}. This enumerates all possible

ways that Dφ can hold at every point in the interval [a, b], essentially repeating

the ∧̇ operator at each point in the interval. Hence we have that Ġ[a,b]Dφ is a
language decomposition for G[a,b]φ. This causes an exponential blow up in the

number of co-formulas produced; speci�cally, |Ġ[a,b]Dφ| = (|Dφ|b−a+1).

U̇(Set Until) Now, we de�ne the U̇ operator to build a language decomposition
for φ U[a,b] ψ. Recall that the semantics of Until requires φ to hold for all time
steps until ψ holds; this implicit Globally φ in the semantics poses the same
challenge as the previous case. As such, we choose not to consider a language
decomposition of φ and de�ne the operator asymmetrically. For Dψ being a

language decomposition of ψ, we de�ne that φ U̇[a,b] Dψ = {φ U[a,b] y | y ∈ Dψ}.
This is a both syntactically and semantically similar de�nition to Ḟ since we
split the implicit Future operation on ψ. Thus using the same line of reasoning
as Ḟ , we have that φ U̇[a,b] Dψ is a language decomposition for φ U[a,b] ψ.
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Ṙ(Set Release) Lastly, we de�ne Ṙ to be a language decomposition for φR[a,b] ψ.
Recall that in the semantics of Release, ψ is required to hold at all times steps
up to and including when φ holds in the interval [a, b], or if φ does not hold at
all, that ψ always holds in [a, b]. We again see the same issue with an implicit
Globally ψ, and thus only consider Dφ being a language decomposition of φ. We

de�ne that Dφ Ṙ[a,b] ψ = {x Ṙ[a,b] ψ | x ∈ Dφ}, noting its similarity to U̇ . Ṙ
splits on the implicit Future operator on φ, and hence the same line of reasoning
as Ḟ and U̇ gives that Dφ Ṙ[a,b] ψ is a language decomposition for φ R[a,b] ψ.

3.1.2 ∧̇, Ḟ , Ġ, Ṙ, U̇ in Isabelle/HOL In our Isabelle/HOL formalization,
we encode sets of co-formulas as lists of formulas because it was more conve-
nient to work with lists in a formal setting. The details of how we formalize
each of the operators ∧̇, Ḟ , Ġ, Ṙ, U̇ can be found in the functions And_mltl_list,
Future_mltl_list, Global_mltl_decomp, Until_mltl_list, and Release_mltl_list,
respectively. Each these functions is a simple map across input lists, except for
Global_mltl_decomp, which is particularly interesting because it recurses on the
length of the interval and repeatedly calls And_mltl_list.

3.2 LP Algorithm for Language Decomposition and Partitioning

The functions de�ned above achieve language decomposition; however, in order
to reach language partitioning, the LP algorithm must combine these functions
to guarantee disjointedness of co-formulas. LP takes as input an MLTL formula
φ augmented with interval compositions (i.e., an input of type mltl_ext) and a
desired decomposition depth d (of type nat). The decomposition depth allows
�exibility for the user to control the granularity of the decomposition. As an
example, we will see that LP (φ ∧ ψ, d+ 1) = LP (φ, d) ∧̇ LP (ψ, d) and for any
φ, LP (φ, 0) = {φ} as the base case. Then LP (φ ∧ ψ, 1) = {φ ∧ ψ} since it hits
the base case for d = 0, while LP (φ ∧ ψ, 2) goes one layer deeper and computes
LP (φ ∧ ψ, 2) = LP (φ, 1) ∧̇ LP (ψ, 1).

Essentially, LP recurses on the decomposition depth d and, within each
depth, splits on the top-level structure of the input formula φ. We assume input
formulas are in negation normal form (NNF) [4], and also transform outputs to
be in NNF before each recursive call. In our formalization, we build upon the
existing NNF transformation from prior work [20].

To give some idea of how this algorithm operates, we provide pseudocode and
an intuitive explanation of LP for each formula structure; we refer the interested
reader to our formalization for the full technical details, and also derive our
implementation from our formalization via code generation. 7

7 Although Isabelle/HOL's code generation is not yet fully veri�ed, it provides a sig-
ni�cantly higher degree of con�dence, especially for a development as technically
intricate as this [15].
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Base Cases As mentioned previously, we de�ne for all shapes of the input formula
φ that LP (φ, 0) = {φ}. Additionally for atomic formulas where φ is either an
atomic proposition p ∈ AP, true, false, or ¬p (recall that φ is in NNF), we also
de�ne that LP (φ, d) = {φ} for all natural numbers d. 8

Non-Temporal Cases Let φ and ψ be MLTL formulas and d > 0. For the And
case, we de�ne that LP (φ∧ψ, d) = LP (φ, d− 1) ∧̇ LP (ψ, d− 1). In this case ∧̇
is su�cient to guarantee disjointedness. This is because the base cases produce
singleton sets of co-formulas, which are trivial language partitions. Hence, we
may assume, as the inductive hypothesis when inducting on d, that LP (φ, d−1)
and LP (ψ, d−1) are language partitions. Then for two distinct formulas x1∧y1 ∈
LP (φ ∧ ψ, d) and x2 ∧ y2 ∈ LP (φ ∧ ψ, d) where x1, x2 ∈ LP (φ, d − 1) and
y1, y2 ∈ LP (ψ, d − 1), either x1 ̸= x2 or y1 ̸= y2. In both cases, the inductive
hypothesis gives that either Lr(x1) ∩ Lr(x2) = ∅ or Lr(y1) ∩ Lr(y2) = ∅, where
r = wpd(φ ∧ ψ). This is su�cient to show that Lr(x1 ∧ y1) ∩ Lr(x2 ∧ y2) = ∅.

For the Or case, we build on the intuition that φ ∨ ψ is satis�ed in three
disjoint ways: φ ∧ ψ,¬φ ∧ ψ, and φ ∧ ¬ψ. Thus, applying ∧̇ in each case is
su�cient to build a language partition of φ∨ψ from LP (φ, d) and LP (ψ, d). We
refer to line 5 in Alg. 1 for the full de�nition.

Fig. 3: We visualize the sub-intervals corre-
sponding to the composition L = 2, 4, 2 for
the interval [3, 10]. We have that s0 = 0,
s1 = 3 + 2 = 5, s2 = 3 + 2 + 4 = 9, and
s3 = 3+2+4+2 = 11, and intervals I1, I2,
and I3, have lengths 2, 4, and 2, respectively.

Temporal Cases In the tempo-
ral cases of Future, Until, and
Release, we consider a list L =
n1, n2, ..., nk as composition of the
associated interval [a, b]; thus re-

call that
∑k
ℓ=1 nℓ = b − a + 1.

We introduce the notation si =
a+

∑i
ℓ=1 nℓ for all i = 0, . . . , k and

observe that s0 = a and sk = b+1.
Intuitively, the sequence of si's
marks out the sub-intervals that
L de�nes for [a, b]; more precisely,
we have that sj − s(j−1) = nj for
all j = 1, . . . , k. Then, we de�ne
the sub-intervals Ij = [s(j−1), (sj) − 1]. We illustrate this in Fig. 3 for the pre-
vious example. Now, we de�ne LP for the temporal cases.

For the Global case, let φ be an MLTL formula and k ∈ N. We de�ne
LP (G[a,b]φ, d) = Ġ[a,b]LP (φ, d − 1). Since Ġ decomposes every time step, we
may view the interval composition of [a, b] as a list of all 1's. An analogous
argument to the And case shows LP (G[a,b]φ, d) is a language partition of G[a,b]φ.

Now for the Future case, let φ be an MLTL formula, k ∈ N, and L be a
list of length k that is a composition for the interval [a, b] with corresponding
sub-intervals Ij ,= [s(j−1), (sj) − 1] for j = 1, . . . , k. Then, we want to capture
the previous intuition for φ to de�ne co-formulas that specify φ holds for the

8 We de�ne the naturals to be N = {0, 1, 2, . . .}
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�rst time in interval Ij . We de�ne that

LP (F[a,b]φ, d) =

k⋃
j=1

({G[a,(s(j−1))−1] ¬φ} ∧̇ (ḞIj
LP (φ, d− 1)))

Intuitively the Globally ¬φ clause is what asserts some co-formula in LP (φ, d−1)
to hold for the �rst time on the interval Ij . Note that for j = 1, the interval
[a, s0 − 1] = [a, a − 1] is malformed (recall that s0 = a); we treat this more
precisely in the formalization by splitting out the j = 1 case, but here we simply
treat this formula as having only the right hand clause.

However, this is in fact not su�cient in general to guarantee that LP (φ, d)
is a language partition of F[a,b]φ. To see why disjointedness fails, consider the
example F[0,5](p ∨ q) for atomic propositions p, q ∈ AP with the interval com-
position L = 3, 3. Using that LP (p ∨ q, 1) = {p ∧ q,¬p ∧ q, p ∧ ¬q}, we have:

LP (F[0,5](p ∨ q), 2) =

F[0,2](p ∧ q),
F[0,2](¬p ∧ q),
F[0,2](p ∧ ¬q)

⋃G[0,2](¬(p ∨ q)) ∧ F[3,5](p ∧ q),
G[0,2](¬(p ∨ q)) ∧ F[3,5](¬p ∧ q),
G[0,2](¬(p ∨ q)) ∧ F[3,5](p ∧ ¬q)


The length 3 trace {p, q}, {q}, {p} satis�es all three formulas from the �rst set,
while the length 6 trace {}, {}, {}, {p, q}, {q}, {p} satis�es all three formulas from
the second set. Although each formula in LP (p∨q, 1) is disjoint at the same time
step, the sub-intervals on the Future operators are �wide enough� such that the
traces can space out the times at which co-formulas of LP (p ∨ q, 1) hold. Thus
in order to obtain disjointedness, it must be the case that either the interval
composition L is a list of all 1's, or that the set LP (p ∨ q, k) has only size 1.

Lastly for the Until and Release case, let φ and ψ be MLTL formulas, k ∈ N,
and L be a list of length k that is a composition for the interval [a, b] with
corresponding sub-intervals Ij ,= [s(j−1), (sj)− 1] for j = 1, . . . , k. For Until, we
de�ne the decomposition of φ U[a,b]ψ based on the �rst time at which ψ holds.
Refer to line 13 in Alg. 1 for the full de�nition of the Until case, noting the
similarities with the Future case. Lastly for Release, we de�ne the decomposition
of φ R[a,b]ψ based on the �rst time at which φ holds; refer to line 15 of Alg. 1.
The di�erence here is that for Release, φ is not required to to hold at some point
in the interval, and thus ψ being Globally true on the interval [a, b] is permissible.
Thus, we split out this special case in the semantics and use the Mighty Release
to specify that φ must hold at some sub-interval Ij . Syntactically, we de�ne
that φ M[a,b]ψ = (φR[a,b]ψ) ∧ (F[a,b]φ). For both Until and Release, we run
into the same issue as Future in which disjointedness requires that the interval
composition be all 1's.

4 Formalizing Language Partition in Isabelle/HOL

To ensure the correctness of our de�nitions and to leverage correct-by-construc-
tion generated code, we formalize the LP algorithm in Isabelle/HOL.We overview
the top-level theorems, and then discuss insights from the unexpected complexity
of our formalization.
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Algorithm 1 The language partitioning algorithm

Input: MLTL Formula φ, Depth k.
Output: Finite set of MLTL co-formulas of φ.

1: function LP:

2: case k = 0 or φ is an atomic formula return {φ}
3: case φ = ψ1 ∧ ψ2 return LP (ψ1, k − 1)∧̇ LP (ψ2, k − 1)

4: case φ = ψ1 ∨ ψ2

5: return
(
LP (ψ1, k − 1)∧̇¬ψ2

)
,
(
¬ψ1∧̇LP (ψ2, k − 1)

)
,
(
LP (ψ1, k −

1)∧̇LP (ψ2, k − 1)
)

6: case φ = G[a,b]ψ
7: if |LP (ψ, k − 1)| ≤ 1 then return LP (ψ, k − 1)
8: else return Ġ[a,b](LP (ψ, k − 1))
9: end if

10: case φ = F[a,b]ψ

11: return
⋃k

j=1({G[a,(s(j−1))−1] ¬φ} ∧̇ (ḞIj LP (φ, k − 1)))

12: case φ = φU[a,b]ψ

13: return
⋃k

j=1({G[a,s(j−1)−1](φ ∧ ¬ψ)}∧̇(φU̇IjLP (ψ, k − 1)))

14: case φ = φR[a,b]ψ

15: return {G[a,b]ψ} ∪
⋃k

j=1({G[a,s(j−1)−1](¬φ ∧ ψ)}∧̇(φṀIjLP (ψ, k − 1)))

16: end function

Where φM[a,b]ψ(Mighty Release) is just syntatic sugar for (φR[a,b]ψ) ∧ (F[a,b]φ).

4.1 Top-Level Theorems

In Isabelle/HOL, we formalize LP as LP_mltl. This function takes as input an
MLTL formula augmented with integer compositions (of type mltl_ext) and a
natural number for the decomposition depth (of type nat). It outputs a list of
co-formulas (of type mltl, because the output formulas no longer need to be
associated with integer compositions). Note that we use lists because they are
easier to work with than sets in Isabelle/HOL.

We �rst formalize that on well-de�ned inputs LP_mltl always computes a
language decomposition of the input formula in the following theorem.

theorem LP_mltl_language_union:

�xes φ::"'a mltl_ext" and k::"nat"

assumes welldef: "intervals_welldef (mltl_ext_to_mltl φ)"
assumes composition: "is_composition_MLTL φ"
assumes D: "D = set (LP_mltl φ k)"

assumes r: "r ≥ wpd_mltl (mltl_ext_to_mltl φ)"
shows "language_mltl_r (mltl_ext_to_mltl φ) r

= (
⋃
ψ∈D. language_mltl_r ψ r)"

The welldef assumption is an artifact of how MLTL is formalized [20], en-
suring that all temporal intervals in the input formula φ are well-de�ned. The
mltl_ext_to_mltl function converts from the extended datatype into the original



12 Rosentrater et al.

mltl datatype, which facilitates our proofs. 9 The composition assumption is also
a well-de�nedness assumption, but on the extended datatype; it requires each nat

list to be an integer composition of the associated interval. The assumptions
D and r introduce abbreviations for the output set of co-formulas and for the
wpd of the input formula, respectively. Given these assumptions, this theorem
establishes that the restricted language of the input formula φ is equal to the
union of the restricted languages in D. Note that the function language_mltl_r,
which computes the restricted language, operates on formulas of type mltl, and
thus we need to use our conversion function mltl_ext_to_mltl when appropriate.

In the next theorem, we formalize conditions necessary for LP_mltl to return
a language partition.

theorem LP_mltl_language_disjoint:

�xes φ::"'a mltl_ext" and ψ1 ψ2::"'a mltl" and k::"nat"

assumes welldef: "intervals_welldef (mltl_ext_to_mltl φ)"
assumes is_nnf: "∃φ_init. φ = convert_nnf_ext φ_init"
assumes composition: "is_composition_MLTL_allones φ"
assumes D: "D = set (LP_mltl φ k)"

assumes diff_formulas: "(ψ1 ∈ D) ∧ (ψ2 ∈ D) ∧ ψ1 ̸= ψ2"
assumes r: "r ≥ wpd_mltl (mltl_ext_to_mltl φ)"

shows "(language_mltl_r ψ1 r) ∩ (language_mltl_r ψ2 r) = {}"

The assumption welldef is the same well-de�nedness condition as before,
and again D and r introduces abbreviations for the output set of co-formulas
and for the wpd of the input formula, respectively. However, now we assume
in composition that is_composition_allones φ, which ensures that φ has well-
de�ned interval compositions and that these compositions are lists of all 1's.
is_nnf assumes that the input formula φ is in NNF, and diff_formulas assumes
that ψ1 and ψ2 are di�erent co-formulas from D. Under these assumptions, this
theorem guarantees that the restricted languages of ψ1 and ψ2 are disjoint,
meaning that the output co-formulas form a language partition.

4.2 Formalization Insights

Now we turn to a discussion of the challenges and insights from our formalization.
First and most notably, this formalization is lengthy and involved. There are
many low-level technical details that were di�cult to get right.

Because the pencil-and-paper proofs were technically detailed, our formaliza-
tion and our theoretical development worked symbiotically and hand-in-hand.
Throughout the course of our formalization, we found a few tweaks to our initial
draft of our theoretical results. For example, we identi�ed the assumption that
the languages of MLTL formulas need to be restricted to traces of length at least
the wpd of the input formula during the formalization. Retrospectively, this is
not a surprising assumption; prior work on formalizing the formula progression

9 This function simply removes the integer compositions.
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algorithm for MLTL [20] found a similar assumption was missing from the cor-
responding theoretical results [21]. Additionally, we had originally hoped that
LP_mltl would produce a language partition with arbitrary interval compositions,
but we found the subtle counterexample discussed earlier in Section 3 during our
formalization. As our formalization ended up being particularly instrumental,
we would recommend that anyone embarking on a similarly technically involved
project using MLTL consider formalization.

The formalization challenges were primarily low-level. For example, although
introducing the extended datatype was theoretically bene�cial � the alternative
we considered was to use the original datatype and a separate list of integer
compositions. but detaching operators from their corresponding compositions
would have been unfortunate. Our choice also introduced the need to develop
formal infrastructure for the new datatype. In the inductive proofs for our top-
level theorems, each assumption incurs an additional proof obligation in order to
use the inductive hypothesis. As an example, we have to prove that the wpd of co-
formulas returned from LP_mltl is at most the wpd of φ. Proofs involving LP_mltl

are almost always lengthy, because of the numerous cases in each operator. An
exemplary case is in the disjointedness proof for the Release case where we had
to prove that ψ1 and ψ2 from the decomposition are disjoint; the formalization
for the Release case in LP_mltl splits into 3 cases, thus requiring a total of 9
cases for every combination of ψ1 and ψ2.

We now turn to our experiments, in which we bene�t from the e�orts of our
formalization by directly using the veri�ed code export.

5 Experiments

To illustrate our experiments, we return to the example from the introduction,
simpli�ed here for clarity:

(
F[0,3]p

)
∨
(
G[0,3]q

)
. As noted previously, there are nu-

merically more traces that satisfy the �rst clause than the second. The language
partitioning of this formula produces the nine co-formulas presented in Table 1.

We compare the language partitioning approach against three existing meth-
ods of trace generation: randomly sampling satisfying traces; generating satisfy-
ing traces with the FPROGG MLTL benchmark generator [28]; and enhancing
the FPROGG tool with con�ict-driving trace enumeration where formulas are
repeatedly updated to exclude the previously generated traces. Each of these
methods has its own limitations. Random sampling is susceptible to missing
very small classes of satisfying traces. For example, out of 2048 possible traces
of length 11 over the formula G[0,10]p, only one satis�es the formula. On the
other hand, FPROGG leverages progressive SAT solving to always produce a
satisfying trace, but only produces one trace per formula; we further extend the
FPROGG tool with con�ict-driving trace enumeration in order to produce more
traces. As a fourth sampling method, we couple the con�ict-driving trace enu-
meration of FPROGG with the LP algorithm to sample multiple traces from
each co-formula.
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Table 1: The co-formulas of F[0,3]p ∨ G[0,3]q.
0 ((F[0,0]p) ∧ (G[0,3]q)) 1 ((G[0,0](¬p)) ∧ (F[1,1]q) ∧ (G[0,3]q))
2 ((G[0,1](¬p)) ∧ (F[2,2]p) ∧ (G[0,3]q)) 3 ((G[0,2](¬p)) ∧ (F[3,3]p) ∧ (G[0,3]q))
4 ((G[0,3](¬p)) ∧ (G[0,3]q)) 5 ((F[0,0]p) ∧ (F[0,3](¬q)))
6 ((G[0,0](¬p)) ∧ (F[1,1]p) ∧ (F[0,3](¬q))) 7 ((G[0,1](¬p)) ∧ (F[2,2]p) ∧ (F[0,3](¬q)))
8 ((G[0,2](¬p)) ∧ (F[3,3]p) ∧ (F[0,3](¬q)))

We use coverage of co-formulas as a metric for how well a set of traces rep-
resents the original formula. This gives a simple and e�ective measure between
sets of traces. By tallying the number of traces from each set that satisfy each
co-formula, we compute the Wasserstein Distance between the distributions of
traces over the co-formulas.

The Wasserstein distance10 quanti�es how close two distributions are based
on the amount of �mass� (data points) that must be moved in order to transform
one distribution into another [19]. We selected the Wasserstein Distance speci�-
cally as our target metric because it quanti�es over distributions. Alternatively,
the distances could have been computed using any number of distance measures
between traces, such as the Hamming distance [12] or the weighted edit distance
from [16] which was introduced for STL [23], a related temporal logic. However,
because these metrics do not quantify over sets of traces, we did not investigate
them for our initial experiments.

Fig. 4: Trace distributions over the coformulas of F[0,3]p ∨ G[0,3]q.

We plot the coverage results of the di�erent sampling techniques in Fig.4
with the percentage of the total number of traces generated by each method on
the left and the coverage results by total count on the right.

Language partitioning produces a uniform distribution over the co-formulas,
as expected. Language partitioning with con�ict-driving samples at least 1 from
each co-formula and produces additional traces from co-formulas 0 and 5. FPROGG
produces only one trace satisfying the co-formula (F[0,0]p) ∧ (G[0,3]q). Adding

10 Also known as the earth-mover's distance.
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con�ict-driving to FPROGG increases the number of traces it is able to produce,
but they still all come from co-formula 0. Similarly, random sampling produces
8 traces, all from co-formula 5. It is important to note that while random sam-
pling creates an equal number of traces as our baseline LP approach, it captures
less co-formulas. The Wasserstein Distances between these distributions are pre-
sented in Table 2. The co-formulas do not have an innate ordering, so the spread
of a distribution is only computed with the number of di�erent co-formulas a
set of traces satis�es. Because we compute the distances between the normalized
distributions, all methods that only sample from one co-formula are considered
identically representative. We see in Fig. 4 that random sampling, FPROGG,
and FPROGG with con�ict-driving all only produce traces satisfying one co-
formula and thus the Wasserstein distance between them is zero. This highlights
the di�erence in diversity of samples produced by each method, as opposed to
the absolute number of traces produced for each co-formula. We see in the two
LP -based approaches that the Wasserstein distance is nonzero, demonstrating
a wider coverage of the co-formulas.

Table 2: Wasserstein distance results for F[0,3]p ∨ G[0,3]q over the normalized
distributions.

FPROGG
Con�ict Driving
with FPROGG

Language
Partitioning

Language Partitioning
with Con�ict Driving

Random
Sampling

0 0 19.8 14.0

FPROGG 0 19.8 14.0
Con�ict
Driving

19.8 14.0

Language
Partitioning

11.5

Implementation To ensure correctness of our implementation, we use the ex-
ported LP algorithm code from the formalization in Haskell. We conducted the
remainder of the experimentsin Python. We used some generative AI in the
form of Github Copilot to increase development speed during the creation of the
Python code.

6 Conclusion

We have de�ned the LP algorithm for e�ectively partitioning MLTL formu-
las, introducing and formalizing the notions of co-formulas, language decompo-
sition, and language partitioning for MLTL. We fully verify this algorithm in
Isabelle/HOL from which we export a high-assurance implementation. We pro-
vide an initial evaluation of it in the context of benchmark generation.

Furthermore, our formalization is extensible and has clear avenues for future
work. For instance, we believe that it is possible to generalize the disjointedness
proofs to include the case when the decomposition depth is 1 for arbitrary integer
compositions. Additionally, it would be interesting to investigate the theoretical
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maximum depth that a formula can be decomposed, as well the necessary depth
of decomposition for practical applications. A loftier goal is to achieve fully
veri�ed MLTL benchmark generation by chaining our formalized algorithms with
formally veri�ed sat solvers (e.g., [24]). We envision our work to pave the way for
future (formalized) investigations of improved MLTL model checking algorithms,
parallel veri�cation, and synthesis.
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