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1 RWTH Aachen University, Aachen, Germany
{abraham|kovacs}@cs.rwth-aachen.de

2 Westfälische Wilhelms-Universität, Münster, Germany
{anne.remke}@uni-muenster.de

Abstract. SMT (Satisfiability Modulo Theories) solving is a technology
for the fully automated solution of logical formulas. Due to their impres-
sive efficiency, SMT solvers are nowadays frequently used in a wide vari-
ety of applications. These tools are general purpose and as off-the-shelf
solvers, their usage is truly integrated. A typical application (i) encodes
real-world problems as logical formulas, (ii) check these formulas for sat-
isfiability with the help of SMT solvers, and - in case of satisfiability -
(iii) decodes their solutions back to solutions of the original real-world
problem.
In this extended abstract we give some insights into the working mecha-
nisms of SMT solving, discuss a few areas of application, and present a
novel application from the domain of simulation.

1 Introduction

Satisfiability checking [2] is a relatively young research area, aiming at the de-
velopment of fully automated methods for checking the satisfiability of logical
formulas. While there are interesting new developments to handle quantified
formulas, our focus in this paper will be on quantifier-free formulas.

Starting with SAT solving for propositional logic, satisfiability checking al-
gorithms have been developed also for numerous first-order-logic theories. The
implementation of these technologies in SMT (SAT Modulo Theories) solvers [6]
turned out to be extremely powerful. This success is due to several key enabling
factors. From the practical side, there has been a strong community support,
agreeing on a standard input language SMT-LIB, providing a large collection
of SMT-LIB benchmarks [5], and organizing annual competitions [1]. From the
theoretical side, algorithms from mathematical logic and symbolic computation
have been adapted and integrated into satisfiability checking methods, guided
by a heuristic and strategic view from the computer science perspective, and
resulting in elegant and innovative algorithms with nice synergies between the
two disciplines.

Besides some well-known SMT solvers AProVE [13], cvc5 [4], MathSAT5 [8],
veriT [7], Yices2 [12] and Z3 [18], we mention our C++ programming library
named SMT Real-Algebraic Toolbox (SMT-RAT) [9], whose characteristics is a
clean modular structure allowing to combine different decision procedures into
strategic SMT solving, with the main focus on solving real-algebraic problems.
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Fig. 1: Embedding SMT solvers in applications

These and a num-
ber of further SMT
solvers are available
as off-the-shelf tools.
That means, they can
be used in a black-
box style as depicted
in Figure 1: feed
them with a logical
description of a prob-
lem to be solved us-
ing the SMT-LIB syntax and, if the problem is satisfiable, get a solution from
the SMT solver and extract from it a solution for the original problem.

However, unsurprisingly, also SMT solvers have bounded scalability. The way
how a real-world problem is encoded logically has a major influence on the
effectiveness of SMT solving. Thus, despite their off-the-shelf nature, for the
users of SMT solvers it might be helpful to have an idea about the internal
working mechanisms of the underlying algorithms.

Therefore, our objectives in this paper are (1) to give an intuition about
how SMT solvers work and (2) to provide some examples that demonstrate how
SMT solvers can be integrated in different algorithms for solving suitable sub-
problems. In the following, we

– give some basic insights into the algorithmic background of SMT solving in
Section 2,

– discuss some example application domains in Section 3,
– present a new application to integrate SMT solving in the simulation of

hybrid Petri nets in Section 4, and
– conclude the paper with some remarks in Section 5.

2 Satisfiability Checking

2.1 SAT Solving

SAT solvers are designed to check the satisfiability of propositional logic formu-
las, which are Boolean combinations of Boolean variables called propositions.

The input first needs to be transformed into conjunctive normal form (CNF),
being a conjunction of clauses, each clause being the disjunction of literals, and
each literal being either a proposition or the negation of a proposition. This
transformation can be done with the method of Tseitin [25] in polynomial time
and space on the cost of additional variables, yielding for each propositional logic
formula a satisfiability-equivalent formula in CNF.

SAT solvers have got really impactful since the discovery of an elegant com-
bination of exploration, (Boolean constraint) propagation, and (Boolean conflict)
resolution [11, 17]. Instead of a formal description of a state-of-the-art SAT al-
gorithm, we give an illustrative example.



– Assume an input CNF formula (a ∨ b) ∧ (a ∨ ¬b), where a and b are propo-
sitions.

– Exploration might decide to check the existence of a solution if a is assigned
false.

– Propagation detects that, if a is false, then the only chance to satisfy the
first clause is assigning true to b.

– However, now the second clause is violated, because all of its literals are
false. Boolean resolution3, applied to the clause in conflict (i.e. the second
clause) and the clause which implied the value for the last literal in the
conflict clause (i.e. the first clause) yields the new clause (a).

– We backtrack by undoing assignments in reverse chronological order until the
new clause is not violated anymore; in this example we undo all assignments.

– Propagation in the new clause detects that a needs to be true.

– Exploration can now choose any value for b, which will result in a full satis-
fying assignment.

2.2 SMT Solving
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Fig. 2: The structure of SMT solving

SMT solving typically extends
SAT solving to be able to han-
dle (quantifier-free) first-order-
logic formulas over some theo-
ries. There are three different
techniques which we describe in
the following; their structures
are illustrated in Figure 2.

Eager SMT solving For some
theories, it is possible to trans-
form their formulas to satis-
fiability-equivalent propositional
logic formulas and use SAT solvers for their solution. This is the approach of
eager SMT solving, where “eager” refers to the fact that the theory constraints
are handled “eagerly”, before handling the Boolean structure. Again, we avoid
formal descriptions and illustrate the idea on an example for equality logic;
similar approaches are available for e.g. uninterpreted functions and bit-vector
arithmetic (“bit-blasting”).

– Assume the formula ϕE := x1 = x2 ∧ x2 = x3 ∧ x1 6= x3 from equality
logic, where the variables x1, x2 and x3 can take values from some arbitrary
but “large enough” domain.

3 Given two clauses (C1 ∨ b) and (C2 ∨ ¬b) such that C1 and C2 are disjunctions of
literals not referring to b, Boolean resolution on a proposition b can be used to derive
the clause (C1 ∨ C2).



– We first replace each equation with a fresh proposition, encoding whether
the given equation holds or not. This yields a Boolean abstraction, e.g. for
our example ϕabs := e1 ∧ e2 ∧ ¬e3.

– The Boolean abstraction is yet an over-approximation, i.e. it has more so-
lutions that the input formula. We need to encode also the transitivity of
equality by stating ϕtra := (e1 ∧ e2)→ e3.

– Now ϕabs ∧ϕtra is equi-satisfiable to ϕE , i.e. checking the former for satisfi-
ability(with a SAT solver) will answer also the satisfiability question for the
latter.

(Less) lazy SMT solving In contrast to eager SMT solving, lazy SMT solving
handles the Boolean structure first, before “lazily” considering the semantics of
theory constraints. This approach first builds the over-approximative Boolean
abstraction of the input problem and checks it for satisfiability using a SAT
solver. If the Boolean abstraction is unsatisfiable, then also the input formula
is unsatisfiable. Otherwise, given a solution for the Boolean abstraction, one or
more theory solver(s) are asked to check the consistency of the Boolean solution
in the theory.

– Consider again ϕE := x1 = x2 ∧ x2 = x3 ∧ x1 6= x3 and its Boolean
abstraction ϕabs := e1 ∧ e2 ∧ ¬e3.

– ϕabs is satisfiable by making e1 and e2 true, and e3 false.

– A suitable theory solver for equations is asked whether the constraints x1 =
x2, x2 = x3 and x1 6= x3 are together satisfiable, which is not the case (due
to the transitivity of equality).

– The theory solver returns an explanation in the form of a theory lemma, in
this case (e1 ∧ e2)→ e3.

– Refining the abstraction with this information makes it unsatisfiable. Thus
the input formula is unsatisfiable.

Model constructing satisfiability calculus (MCSAT) [20] avoids master-slave struc-
tures and lets the SAT and the theory search evolve hand in hand in a consistent
fashion. It does so by introducing exploration, propagation and conflict resolu-
tion also for the theory search, dually to the Boolean search.

– Assume again ϕE := x1 = x2 ∧ x2 = x3 ∧ x1 6= x3 over the real domain.

– To explore in the theory, we guess a value for x1, e.g. 0.

– The Boolean search detects that x1 = x2 needs to hold. Theory propagation
yields x2 = 0.

– The Boolean search detects that x2 = x3 and x1 6= x3 needs to hold. How-
ever, they have no common solution with x1 = x2 = 0.

– Thus our guess x1 = 0 was wrong. We can generalize such a wrong gues by
e.g. quantifier elimination. In this case, the guess can be generalized to the
whole real domain, i.e. the formula cannot be satisfied for any value of x1.
Thus ϕE is unsatisfiable.



3 Applications

At the 2022 edition of the Computer-Aided Verification (CAV) conference, Neha
Rungta from Amazon suggested in her keynote titled A billion SMT queries a day
[23] that innovations at Amazon have “ushered in the golden age of automated
reasoning”.

Whereas in those applications, Amazon exploits SMT solving mainly for
correctness reasoning, SAT and SMT solvers enjoy frequent usage in a diverse
spectrum of further application domains. The aim of this section is to give an im-
pression and a few examples about where and how SMT solvers can be employed
to solve real-world problems.

3.1 A Toy Encoding Example

Let us start with a toy example to illustrate how a simple combinatorial problem
can be encoded in linear real arithmetic. Assume that, after the Covid lockdown
times, Eve is eager to make in 2023 scientific visits again.

– She has 100 travel wishes A1, . . . , A100.
– She is allowed to make only 5 travels.
– She wants to be physically at A1 = iFM′23.
– To coordinate a project, she needs to visit either A2 or A3.
– Travel Ai costs Ci EUR.
– Eve can spend up to C EUR.
– Travel Ai takes Ti days.
– Eve wants to travel at least T days.

The following linear real arithmetic formula encodes the solutions to the
above problem. Besides the constants used in the problem specification, it uses
for each i ∈ {1, . . . , 100} variables (i) ai ∈ {0, 1} to encode whether Eve chooses
travel Ai (xi = 1) or not (xi = 0) and (ii) ci and ti for the costs and time for
travel Ai, which are 0 if Ai is not chosen:( 100∧

i=1

(
(ai = 0 ∧ ci = 0 ∧ ti = 0) ∨ (ai = 1 ∧ ci = Ci ∧ ti = Ti )

) )
∧

( 100∑
i=1

ai ≤ 5

)
∧ (a1 = 1) ∧ (a2 = 1 ∨ a3 = 1) ∧

( 100∑
i=1

ci ≤ C
)
∧
( 100∑

i=1

ti ≥ T
)

3.2 Planning with Optimization Modulo Theories

With the advent of Industry 4.0, increasing automation in production pro-
cesses poses new challenges on production management. The RoboCup Logistics
League (RCLL) [21] has been proposed to study these challenges at a compre-
hensible and manageable scale.

In an RCLL application, two teams of robots share a work space, as illustrated
in Figure 3. Each team consists of three robots and owns a set of machines



BS RS 1 RS 2 RS 2 CS 2

0 200 400 600 800 1000
0

200

400

600

800

1000

OMT

R
O
S
P
l
a
n

Fig. 3: Planning with optimization modulo theories. Source: E. Ábrahám, G.
Lakemeyer, F. Leofante, T. D. Niemüller, A. Tacchella: PhD Leofante, publi-
cations in IJCAI’20, Information Systems Frontiers 2019, ECMS’19, AAAI’18,
iFM’18, ICAPS’17, PlanRob’17, IRI’17.

(e.g. BS, RS1, RS2 or CS2) which they can use to produce certain products.
Orders for products are announced dynamically during runtime. The production
of each ordered product requires certain material and certain production steps
to be executed under some partial order on certain machines with some required
functionalities. The teams get rewards for each completed (or even partially
completed) ordered product. The aim is to plan the production steps within a
team in a collaborative manner to maximize the received rewards.

The complexity of the corresponding planning problem, due to e.g. temporal
aspects, numerical quantities and the collaboration between the robots, makes
its solution challenging. In a row of works, see e.g. [16], we proposed several
ways to encode different sub-problems logically, and used SMT solvers for sat-
isfiability checking as well as for optimization to solve those logically encoded
sub-problems efficiently. Our methodology won the first place in the 2018 Plan-
ning and Execution Competition for Logistics Robots in Simulation, held at the
International Conference on Automated Planning and Scheduling.

3.3 Reachability Analysis for Hybrid Systems with HyPro

Hybrid systems are systems with mixed discrete-continuous behavior. Typical
examples are physical systems that are controlled by discrete controllers, like
often present e.g. in the safety-critical automotive domain. Formal methods play
an important role to assure the safety of such hybrid systems.



d
a
ta

st
ru

ct
u
re

s

u
ti

l

algorithms

re
p
re

se
n
ta

ti
o
n
sBox

HPolytope

VPolytope

PPL-Polytope

Zonotope

SupportFunction

Orthogonal polyhedra

Taylor model

GeometricObject

<Interface>

H
y
b
ri

d
a
u
to

m
a
to

n
P

o
in

t
H

a
lf

sp
a
ce

Converter

Plotter

Logger

Parser

Reachability
analysis

Optimizer

glpk SMT-RAT Z3 SoPlex

Fig. 4: The structure of the HyPro tool for computing reachability in hybrid sys-
tems. Source: S. Schupp, E. Ábrahám, I. Ben Makhlouf, S. Kowalewski. HyPro:
A C++ library of state set representations for hybrid systems reachability anal-
ysis. In Proc. of NFM’17.

To enable the usage of formal methods, hybrid systems need to be formalized
in a suitable modeling language, like e.g. hybrid automata. Furthermore, we need
algorithms to compute, for a given formal model and a given set of initial states,
all the states that can be reached during the evolution of the system model. Since
the reachability problem for hybrid systems is undecidable, most algorithms side-
step to over-approximative computations. Once we know (an over-approximation
of) the set of all reachable states, we can check whether it includes any unwanted
(dangerous or unsafe) states.

For the automation of these computations, we need data structures to rep-
resent state sets, along with all the operations on them which are needed for
the reachability analysis, like e.g. the linear transformation of a state set, or
the union, intersection or the Minkowski sum of two state sets. There are dif-
ferent state set representations are in use, which differ in their precision and
efficiency. The HyPro C++ programming library [24] offers implementations for
the most popular state set representations, and reachability algorithms using
those representations.

The structure of HyPro is depicted in Figure 4. To implement the different
set operations on the representations, we often need to solve arithmetic sub-
problems. Some of the available options to solve these sub-problems is to dele-
gate them to some dedicated SMT solvers. Note that most SMT solvers accept
command-line input in the SMT-LIB format, but their application programming
interface (API) is not standardized (yet), such that adding a new SMT solver
back-end requires a new wrapper around its API to fit the reachability analysis
calls.



Fig. 5: Parameter synthesis for probabilistic systems. Source: C. Dehnert,
S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen,
E. Ábrahám. PROPhESY: A probabilistic parameter synthesis tool. In Proc.
of CAV’15.

Besides HyPro, also other analysis tools for hybrid systems reachability em-
ploy SMT solvers. Here we mention only dReach [15] with its dedicated SMT
engine named dReal.

3.4 Parameter Synthesis for Probabilistic Systems

Discrete-time Markov chains (DTMCs) are a popular modeling formalism to de-
scribe systems whose behavior involves probabilistic behavior or whose behavior
is influenced by uncertainties that can be quantified by probabilistic distribu-
tions. When the involved distributions are parameterized we talk about para-
metric DTMCs. Figure 5 depicts an example model on the top left. The circles
are the system states; the state s0 with the incoming arrow without a source
state is the initial state. For each state, its outgoing transitions are labeled with
probabilities, which should sum up to 1. If parametric expressions are involved,
the valid domains for the parameters are such that the transition probabilities
build valid probability distributions.

The PROPhESY tool has been developed to determine regions in the valid
parameter domain, for which certain reachability probability bounds are prov-
ably satisfied or provably violated. For the example in Figure 5, the probability
to reach the state s4 from s0 satisfies some fixed upper bound in the green areas,
this bound is violated in the red areas, whereas no guarantees can be given for
the white areas.

To compute such regions, first the reachability probability in question is
computed symbolically (using state elimination, the result shown on the top
right in the figure). Then an SMT solver is used to check whether all values in



the parameter domain satisfy, respectively violate the probability bound. If it is
the case then we can ”color” the domain green respectively red, otherwise the
domain is split into smaller sets for which the check is done recursively. The
main challenge here is that for relevant systems, the expression that denotes the
symbolic reachability probability can get extremely large with complex high-
degree polynomial expressions involved.

4 Hybrid Petri Nets and Rate Adaption

In the previous section we reported on some existing SMT solver embeddings in
a few domains. In this section, we propose a novel application of SMT solving
in the area of modeling and simulation for hybrid Petri nets.

4.1 Hybrid Petri Nets

A Petri net D = (Pd, T d,Ad,m0) as defined by [22], consist of a set of (discrete)
places Pd, a set of transitions T d, and a set of directed arcs Ad, connecting places
and transitions and vice versa.

A place pi ∈ Pd contains a discrete number of tokens mi ∈ N. The marking
of a Petri net is given as a vector m = {m1, . . . ,m|Pd|} indicating the number
of tokens currently contained in each place. The initial marking is given by m0.

Directed arcs are defined by Ad ⊆ (Pd×T d)∪ (T d×Pd). Transitions change
the marking of connected places upon firing as follows: A transition t ∈ T d

removes a predefined number of tokens from every input place p that is connected
via an arc (p, t), hence directed towards t. Correspondingly, it adds a number
of tokens to every output place p that is connected via an arc (t, p) pointing
away from t. A transition can only fire if it is enabled, i.e., if the marking has a
sufficient number of tokens in every input place. To ease notation, here we assume
that each transition removes exactly one token from each of its input places and
adds exactly one token to each of its output places. Enabled transitions may fire
independently and in an arbitrary order in the original definition of Petri nets.

Hybrid Petri nets, as introduced in [3] extend a Petri net D with time and
continuous places, transitions and arcs. A hybrid Petri net is defined by the tuple
H = (P, T ,A,m0,x0, Φ), which adds an initial continuous marking x0 and a
parameter function Φ to the sets of places P, transitions T and arcs A and the
initial discrete marking m0.

The parameter function specifies additional values for places, transitions and
arcs Φ = (φPc , φ

T
d , φ

T
c , φ

A
s , φ

A
p ), which will be formalised below.

The set of places P = Pd∪Pc is composed from disjoint finite sets of discrete
and continuous places. Continuous places pci ∈ Pc have a continuous marking
xi ∈ R+

0 , which is referred to as fluid and is lower bounded by 0. The parameter
function φPc : Pc → (Q≥0 ∪ {∞}) assigns a capacity to every continuous place.
We say that a place is empty if there is no fluid in it and full if the amount
of fluid in it equals its capacity. In contrast, discrete places pdi ∈ Pd contain a
discrete marking mi ∈ N0 and have an unbounded (infinite) capacity.



The finite set of transitions T = T d∪T c is composed from discrete transitions
T d which change the discrete marking and continuous transitions T c which
change the continuous marking.

Discrete transitions have a deterministic firing time, specified by the param-
eter function φTd : T d → R+. Every deterministic transition tdi is associated
with a clock ci, which if enabled evolves with dci/dt = 1, otherwise dci/dt = 0.
Note that upon disabling, the clock value is preserved. A deterministic transi-
tion tdi ∈ T d fires when ci reaches the predefined transitions firing time. Discrete
transitions with firing time zero are denoted as immediate transitions and fire
as soon as they are enabled. If multiple immediate or deterministic transitions
are supposed to fire at the same time, this so-called conflict is resolved using
priorities and weights, which results in a probabilistic decision. For details on
conflict resolution we refer to [3].

When enabled, continuous transitions tc ∈ T c fire continuously with a con-
stant nominal flow rate assigned by ΦTc : T c → R+. We refer to [10] for a detailed
discussion of the concept of enabling.

Transitions and places are connected via the finite set of arcs A. Discrete arcs
Ad connect discrete places and transitions, while continuous arcsAc connect con-
tinuous places and continuous transitions, respectively. Note that for simplicity,
we omit guard and inhibitor arcs, as well as arc multiplicity and arc weights.
Given a discrete marking m, the above simplification leads to the marking m′

after firing a discrete transition td ∈ T d, where

m′i =


mi − 1 iff (pdi , t

d) ∈ Ad ∧ (td, pdi ) /∈ Ad,

mi + 1 iff (td, pdi ) ∈ Ad ∧ (pdi , t
d) /∈ Ad,

mi otherwise.

In addition to the firing of discrete transitions, the state of a hybrid Petri net
changes continuously with time if at least one continuous transition is enabled.
Again for simplicity, we restrict continuous transition tc to have at most one
source and one target, defined as follows:

– source : T c → (Pc ∪ {⊥}): for all tc ∈ T c, if there is a place pc that is
connected via an arc (pc, tc) then source(tc) = pc, otherwise source(tc) = ⊥,

– target : T c → Pc∪{⊥}: for all tc ∈ T c, if there is a place pc that is connected
via an arc (tc, pc), then target(tc) = pc, otherwise target(tc) = ⊥.

The input bag I(pc) and output bag O(pc) of a continuous place pc are defined
as follows:

– I : Pc → 2T
c

: for all pc ∈ Pc, I(pc) = {t ∈ T c | target(tc) = pc} is the set of
all transitions with target pc.

– O : Pc → 2T
c

: for all pc ∈ Pc, I(pc) = {t ∈ T c | source(tc) = pc} is the set
of all transitions with source pc.

A continuous transition can be disabled if a connected source place is empty
or a connected target place is full. In order to model realistic physical behavior,



the semantics of hybrid Petri nets adapts the nominal flow rate of transitions
that are in the input bag of a full continuous place, as well as the nominal
flow rate of transitions that are in the output bag of a an empty continuous
place. Initially, all continuous transitions fire with their nominal rate, after rate
adaption as described in Section 4.2 has taken place, the so-called actual flow
rate θ(tc) for tc ∈ Pc may be smaller than the assigned nominal rate.

During time evolution, the continuous marking changes continuously with
the drift specified for each continuous place as

d(pc) =
∑

tc∈I(pc)

θ(tc)−
∑

tc∈O(pc)

θ(tc),

as the difference of the actual flow rates of the transitions to which pc is connected
as target or source.

4.2 Rate adaption

If the fluid of a continuous place reaches one of its boundaries, i.e. zero or its
upper-bounding capacity, rate adaption reduces the actual flow rates of the af-
fected continuous transitions based on the share φAs and priority φAp of the
corresponding continuous arcs to prevent under- or overflow of that place.

Rate adaption is introduced in [3] as fixed-point iteration. The change of
the actual flow rate of a continuous transition potentially modifies the drifts of
continuous places, which in turn can trigger rate adaption for further continuous
transitions. Hence, the algorithm needs to iteratively check all continuous places
that are at either boundary.

In every iteration, for all continuous places at their upper capacity with a
positive drift, the inflow is reduced to match the outflow and at all continuous
places at the lower boundary with a negative drift, the outflow is reduced to
match the inflow.

More specifically, the algorithm iterates over the continuous places that are
at a boundary and per place computes the amount of available fluid. In case of a
place at the lower boundary, the available fluid is given by the sum of the actual
flow rates of the connected input transitions, which is then redistributed over
the connected output transitions according to their priority and share. The case
for full places is analogous, but with a reduction of the input transitions’ rates.

The iteration terminates when all fluid places at the upper boundaries have a
drift that is smaller or equal to zero and all fluid places at the lower boundaries
have a drift that is greater or equal to zero.

As described in [14], the adaption of the actual flow rates can be challenging,
depending on the structure of the Petri net at hand. If each continuous transition
is involved in at most one conflict, the rate adaption proposed in [10] always
terminates with a unique result. In the general case, Algorithm 5.7 from [10]
applies an additional partitioning and ordering which assures termination with
a unique result. However, different orderings might yield different results, which
does not necessarily truly model real physical behavior.
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where a transitions par-
ticipates in two conflicts

As an example, consider the hybrid Petri net
shown in Fig. 6. Continuous places are drawn as dou-
ble circles and continuous transitions as double rect-
angles, full continuous places are filled black, empty
places are white. The nominal flows are shown be-
sides the transitions. Note that this example contains
no discrete components and that transition t3 is in-
volved in two conflicts, namely at p1 and at p2.

If the conflict at p2 is adapted first, its input tran-
sitions (t2 and t3) are reduced to match the outflow.
Assuming equal priority and share, the actual flow
rates are set to θ(t2) = 2.5 and θ(t3) = 0.5. With
these actual flow rates rate adaption terminates, as
the conflict at p1 has been resolved ”by chance”.

However, if p1 is processed first, it’s outflow is re-
duced to match the inflow. The actual flow rate of t3
is then set to θ(t3) = 0.5. As p2 is still conflicted, it’s
incoming flow needs to be reduced by a factor of 2/7
to achieve the new rates θ(t2) = 10 · 2/7 = 20/7 and
θ(t3) = 0.5 · 2/7 = 1/7, i.e. an inflow of 3 and thus a drift of 0. For this order,
the outflow of p1 is reduced stronger than needed and results in a positive drift
at p1. However, without an explicit control, in reality the drift would be always
adapted to zero.

4.3 Formulation as an SMT Problem

Hence, while the ordering applied for rate adaption ensures termination with a
unique result, it clearly influences the resulting actual flow rates and does not
always yield results that are physically meaningful.

We propose to change the rate adaption mechanism from an iterative fixed-
point search to an SMT-based approach: instead of iteratively adapting places,
we suggest to use a logical formulation of the smallest fixed-points, and use an
SMT solver for finding the required rates.

The advantages are the following: Firstly, out method always terminates,
without any restrictions on the shape of the hybrid Petri net. Secondly, we
design the formulation to assure not only satisfiability but also a unique solution.
Thirdly, this unique solution truly reflects the natural physical behavior, keeping
all rate adaptions minimal, i.e. just as small as needed to resolve conflicts.

To emphasize the key ideas, we assume equal priorities and share. Intuitively,
for each empty place p in conflict (i.e. with a negative drift) we consider its output
bag and reduce the contained transitions with the same factor. However, some
transitions from its output bag may be reduced by other places by more than
what would be needed to bring the drift of p to zero according to the fixed-point.

In the SMT-based approach, this problem of mutual reduction is circum-
vented by introducing the concept of ownership. We call the place which implies
a strongest reduction on a transition its owner. Each place then only reduces the
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ΦT

c (t))∧

outp = (
∑

t∈O(p)∩Ta
factort · ΦT

c (t)) + (
∑

t∈O(p)∩Tna
ΦT

c (t))
)
∧

(4)
[ ∧
p∈Pe

((
factorp = 1 ∨

∨
t∈O(p)

ownert = p
)
∧( ∧

t∈O(p)

(ownert = p→ factort = factorp)∧

(ownert 6= p→ factort < factorp)
)
∧

inp ≥ outp ∧ (factorp < 1→ inp = outp)
)]
∧

(5)
[ ∧
p∈Pf

((
factorp = 1 ∨

∨
t∈I(p)

ownert = p
)
∧( ∧

t∈I(p)

(ownert = p→ factort = factorp)∧

(ownert 6= p→ factort ≤ factorp)
)
∧

inp ≤ outp ∧ (factorp < 1→ inp = outp)
)]

Fig. 7: SMT encoding for the novel rate adaption mechanism

rates of the transitions it owns by the same factor, namely by a maximal factor
that just assures zero drift for p.

Recall that the capacity of a place p ∈ Pc is given ΦPc (p), while the current
amount of fluid for all continuous places is stored in the continuous marking x,
where x(pi) = xi for pi ∈ Pc.

For readability we introduce some relevant sets of continuous places and
continuous transitions for rate adaption. Since we focus on the continuous part
of a hybrid Petri net, we omit the superindex c for readability in the newly
defined sets.

– Pe: the set of continuous places that are empty, i.e. all p ∈ Pc with x(p) = 0.
– Pf : the set of continuous places that are full, i.e. all p ∈ Pc with x(p) = φPc (p)
– P = Pe ∪ Pf .

– T : the set of all transitions t ∈ T c that are connected to at least one place
from P , i.e. {source(t), target(t)} ∩ P 6= ∅.

– Ta: the set of all potentially adaptable transitions t ∈ T either with empty
source or with full target, i.e., x(source(t)) = 0∨x(target(t)) = φPc (target(t)).

– Tna = T \ Ta: the set of all non-adaptable transitions from T .



Our encoding, shown in Figure 7, makes use of the following variables:

– For all p ∈ P , the variables inp and outp, both with domain Q≥0, encode
p’s inflow resp. outflow after rate adaption: inp =

∑
t∈I(p) θ(t) and outp =∑

t∈O(p) θ(t).
– For all t ∈ Ta, ownert with domain P denotes the owner place of transition
t.

– For all p ∈ P , by factorp with domain [0, 1] ⊂ Q we encode the reduction
factor for the rates of all transitions owned by p. All other transitions from
p’s output resp. input bag need to be reduced by other places by a factor at
most factorp (i.e. at least as strongly reduced as p’s reduction factor).

– For all t ∈ Ta, we encode by factort with domain [0, 1] ⊂ Q the rate
reduction factor for transitions t, i.e. the reduction factor of its owner place.

The encoding consists of 6 main components:

(1) All rate adaption factors reduce the nominal rates and do not change their
signs.

(2) The owner of each adaptable transition is either its source place or its target
place.

(3) The inflow of a place p accumulates the actual flow rate of all transitions
from p’s input bag, i.e. the transition’s rate adaption factor multiplied by its
nominal rate. The case for the outflow of a place is analogous.

(4) A reducing empty place p must own some transitions from its output bag
(or otherwise the place is not reducing, i.e. it has reduction factor 1). All
transitions owned by p are reduced with the same factor, namely the place’s
reduction factor. All other transitions from the output bag must be reduced
by other places by a smaller factor (i.e. stronger). Finally, the last line in
part (4) assures that the rate reduction resolve all conflicts, but it poses only
as much restrictions as needed.

(5) The case for full places p is analogous but argues about rate reductions for
the transitions in p’s input bag.

5 Some Final Remarks

After providing a general overview of satifiability checking, the paper showcased
its usefulness and applicability on three examples. First a toy example was pre-
sented, before applications in (i) planning with optimization modulo theories
and (ii) reachability analysis for hybrid systems were given. Summarizing, one
of the main advantages of SMT solvers is their use as black box, which entails
that the rapid development of SMT solvers automatically improves these ap-
plications. This is witnessed by the the wide rage of applications [19], such as
optimization, proof and certificate generation, as well as satisfiability checking
of quantified formulas.

The remainder of the paper illustrated an additional use-case for SMT solving
in more detail: the analysis and simulation of hybrid Petri nets require a so-
called rate adaption algorithm, which is traditionally implemented as fixed-point



algorithm which converges to a unique result under very specific constraints. This
paper proposes a more elegant approach, by formalising rate adaption as SMT
problem, which can then be solved by state-of-the-art SMT solvers. Future work
will introduce an additional iterative algorithm which is guaranteed to converge
to a unique solution. Furthermore, we will proof that this unique solution equals
the solution of the SMT encoding, presented here.
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