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Abstract

Mission-time Linear Temporal Logic (MLTL) is a finite, discrete, closed-interval-bounded variant of Metric Temporal Logic (MTL)
that formal methods practitioners use to specify requirements for safety-critical systems, such as aircraft and spacecraft. Our tool
addresses the specification bottleneck of formal verification by providing an interactive visualization tool for MLTL that allows
practitioners to validate that their MLTL specifications do indeed match the intended requirements. We provide an overview of
the functionalities of the command-line interface and the graphical user interface of the WEST tool. Additionally, we provide five
independent methods used to validate the tool’s correctness, as well as experimental results demonstrating the tool’s scalability on
three suites of randomly generated MLTL formulas.
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1. Introduction

Mission-time Linear Temporal Logic (MLTL) adds finite, discrete, closed-interval bounds over integers to the
temporal operators of Linear Temporal Logic (LTL). Many specifications from case studies written in other bounded
logics such as Metric Temporal Logic (MTL) and Signal Temporal Logic (STL) can be transformed to specifications
in MLTL [1, 2]. MLTL was the specification logic for NASA’s Robonaut2 verification project [3] as well as the spec-
ification logic for both design-time and runtime verification of the NASA Lunar Gateway Vehicle System Manager
[4, 5, 6]. There has also been an abundance of verification efforts involving MLTL (see [7, 8, 9, 10, 11, 12]). Al-
though formal methods in practice presume that human designers will translate system specifications to formal logic
specifications (i.e., temporal logic), this is known to be challenging, e.g., for LTL [13] and STL [14]. Misconceptions
during the translation of English requirements to logical specifications have been a long-standing bottleneck of formal
verification [15]. After all, model checking is not very useful when the specification being checked is not the one
intended by the system designer. Various published tools address this issue for LTL [16], MTL [17], and STL [18],
but WEST [19] is first to address this issue for MLTL.
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We present the WEST tool for the validation of MLTL specifications, adapted from the WEST algorithm [19].
Our tool provides visualizations for MLTL formulas: given an MLTL formula, WEST produces the set of trace
regular expressions (described in section 2) that succinctly captures the set of satisfying traces for the formula. The
tool features a command-line interface (CLI) as well as a graphical user interface (GUI). The CLI writes outputs to
console, as well as to output files. The GUI allows the user to interact with traces to explore the behavior of the
formula. The CLI is written in C++, while the GUI is written in Python using the PyQt5 library, using the CLI as its
backend. A video tutorial on how to build and use the WEST tool as well as the source code can be found at [20].

2. Background

Given a finite set of atomic propositionsAP, the syntax of MLTL formulas φ, ψ, and ξ are recursively defined as:

ξ := true | f alse | p | ¬φ | φ ∧ ψ | φ ∨ ψ | F[a,b]φ | G[a,b]φ | φU[a,b]ψ | φR[a,b]ψ,

where p ∈ AP, and a, b ∈ Z such that 0 ≤ a ≤ b. The symbols F, G, U, R denote the temporal operators Future,
Globally, Until, and Release, respectively.

Definition 1. A trace π of length m is a finite sequence π = π[0], . . . , π[m − 1] of sets of atomic propositions (i.e.,
π[i] ⊆ AP), where p ∈ π[i] if and only if p is true at time step i.

Traces represent timelines that encode the truth values for each atomic proposition at every time step. We denote
the suffix of π starting at i (including i) by πi. Thus note that π0 = π. The length of a trace π is denoted by |π|. We
evaluate an MLTL formula over a trace as follows.

Definition 2. The satisfaction of an MLTL formula φ by a trace π, denoted π ⊨ φ, is defined as follows [19]:

π ⊨ p iff |π| > 0 and p ∈ π[0] π ⊨ ¬φ iff π ⊭ φ

π ⊨ φ ∧ ψ iff π ⊨ φ and π ⊨ ψ π ⊨ φ ∨ ψ iff π ⊨ φ or π ⊨ ψ

π ⊨ F[a,b] φ iff |π| > a and ∃i ∈ [a, b] such that πi ⊨ φ π ⊨ G[a,b] φ iff |π| ≤ a or ∀i ∈ [a, b] πi ⊨ φ

π ⊨ φ U[a,b] ψ iff |π| > a and ∃i ∈ [a, b] such that πi ⊨ ψ and ∀ j ∈ [a, i − 1] π j ⊨ φ

π ⊨ φ R[a,b] ψ iff |π| ≤ a or (∀i ∈ [a, b] πi ⊨ ψ) or (∃ j ∈ [a, b] such that π j ⊨ φ and ∀k ∈ [a, j] πk ⊨ ψ)

Illustrations of the intuitive meanings of the temporal operators appear in Figure 1. A formula φ is in negation
normal form (NNF) if negations only appear in front of atomic propositions. Any MLTL formula not in NNF can be
converted to an equivalent formula linear in the size of the original formula by pushing negations inwards using the
logical duals: ¬(φ U[a,b] ψ) is equivalent to (¬φ R[a,b] ¬ψ), and ¬G[a,b] φ is equivalent to F[a,b] ¬φ.

Since the set of atomic propositions is finite, we may assume without loss of generality thatAP = {p0, p1, . . . , pn−1}.
This imposes a natural ordering on the atomic propositions, which we use to define the string encoding of a trace.

Figure 1: “Intuitive” semantics of the temporal operators. The presence
of a variable indicates that it is true at that time step, and the absence
indicates that it is false.

Figure 2: Example of the correspondence between
a trace regular expression and the types of traces it
represents. The absence of a variable indicates that
its truth value is not specified at that time step.

Definition 3. The string encoding of a finite trace π of length m = |π| over n = |AP| atomic propositions is the string
wπ ∈ {0, 1}mn, i.e., a binary string of length mn, such that pk ∈ π[i] if and only if the (i ∗ n + k)-th character (indexing
from 0) of wπ is 1. We will refer to the string encoding of a trace as simply the trace.
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Definition 4. For fixed m, n ∈ N, a trace regular expression is a string r ∈ {0, 1, s}mn representing a set of traces of
length m over n atomic propositions. This set is the language of the trace regular expression, denoted L(r) ⊆ {0, 1}mn,
where a trace π of length m belongs to L(r) iff for every 0 ≤ i < mn, the i-th character of r is either s or is equal to the
i-th character of π. In other words, 0 and 1 represent the truth assignments true and false for an atomic proposition at
the corresponding time step, respectively, and s represents that the truth assignment can be either true or false.

The computation length of an MLTL formula φ is the minimum length needed for a trace so that no interval
in φ is out of bounds, as defined in [19], also known as the worst-case propagation delay in [21]. Given an MLTL
formula φ with n = |AP| atomic propositions and computation length m = complen(φ), the corresponding trace
regular expressions reg(φ) represents the set of all traces of length m that satisfy φ [19]. That is, L(reg(φ)) =
{π : π ⊨ φ and |π| = m}; [19] proves this representation is sound and complete. As an example, the trace regular
expression r = 00,s1,0s (illustrated in Figure 2) represents a set of 4 traces, each of length 3, over atomic propositions
AP = {p0, p1}. For any trace π ∈ L(r), p0 and p1 are false at time 0, p1 is false at time 1, and p0 is false at time 2.

3. WEST Algorithm and Tool

We provide an overview of the WEST algorithm. The algorithm takes as input an MLTL formula φ in negation
normal form, and recursively computes a set of trace regular expressions, reg(φ), each of length complen(φ) that
captures the set of traces satisfying φ. The base cases of the recursion are if φ is a literal, meaning an atomic propo-
sition or its negation; if φ is the Boolean constant true, in which case the trace regular expression is simply the string
encoding of the trace of length 1 of all s; or if φ is the Boolean constant f alse, in which case the algorithm returns
the empty trace. The recursive case for conjunction (∨) computes the union of the sets of trace regular expressions,
while the recursive case for disjunction (∧) computes the intersection of the sets of trace regular expressions. The
recursive cases for the temporal operators F, G, U, R are computed solely using ∧ and ∨ operations, and the base cases
of the recursion. The details for the remaining recursive cases appear in [19], as well as proofs for the soundness and
completeness of the algorithm. A summary of the WEST algorithm appears in Figure 3.

Figure 3: Abstracted flowchart of the WEST algorithm on input formula
φ in negation normal form. Red nodes indicate recursive calls to reg on
subformulas of the input formula. Inputs to recursive calls are MLTL
formulas, and the outputs are trace regular expressions, each handled by
the appropriate case of the algorithm.

Figure 4: Example output of the WEST command-line tool on the
formula (p0 ∧ ¬(F[0, 3]¬p1)) → p2. WEST prints the set of trace
regular expressions for the formula, along with various other statis-
tics.

3.1. Command-line Tool

The command-line tool runs by executing the command ./west <formula>. The formula input syntax is detailed
in the repository’s README file [20]. The tool will output the set of trace regular expressions that represent the set of
satisfying traces for the formula to the console, along with various other information such as the negation normal form
of the formula, the number of atomic propositions, the number of trace regular expressions computed, and the time
taken. For each subformula of the input formula (including the input formula itself), the tool writes the corresponding
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set of trace regular expressions to the output directory. An example of running the command-line tool on the formula
(p0 ∧ ¬(F[0, 3]¬p1))→ p2

1 appears in Figure 4.

Figure 5: The left screenshot shows the WEST GUI when the input formula (p0 ∧ ¬(F[0, 3]¬p1)) → p2 is satisfied by the toggled trace, indicated
by the formula highlighted in green. The formula highlighted in red (right screenshot) indicates that the toggled trace does not satisfy the formula.

3.2. User Interface
The GUI is written in Python using the PyQt5 library, using the command-line tool as a backend. The GUI

prompts the user to input an MLTL formula (label 1 in Figure 5), with options to optimize bits (label 2), apply the
Regular Expression Simplification Theorem (label 3), which is stated and proven in [19], and display the negation
normal form of the formula (label 4). The user is then prompted to select a subformula to visualize (label 5). Upon
selecting a subformula, the GUI will display the set of trace regular expressions for the subformula (label 6), and the
user can interact with the trace by toggling the truth values of the atomic propositions at each time step (label 7). The
trace updates in real time (label 8), and the formula gets highlighted in green if the trace satisfies the subformula (label
9), and highlighted in red if the trace does not satisfy the subformula (label 10). The trace can also be specified by
typing the string encoding of the trace into the GUI, or importing it from a CSV file (label 11), and the trace can be
exported to a specified CSV file (label 12). The reset button resets the trace to the trace with all atomic propositions
false (label 13). The Rand SAT button randomly generates a satisfying trace (label 14), while the Rand UNSAT button
randomly generates an unsatisfying trace (label 15). Clicking on one of the listed trace regular expressions randomly
selects a trace from the set of traces represented by that trace regular expression (label 16).

Lastly, the backbone assignments for the formula and the negation of formula appear under the backbone tab (label
17). The backbone of a formula is the assignment of atomic propositions that must hold in every satisfying trace of
the formula. Accordingly, the backbone of the negation of the formula is the assignment of atomic propositions that
must hold in every unsatisfying trace of the formula. The backbone analysis is useful for understanding the necessary
conditions for satisfaction and unsatisfaction of the formula.

3.3. Implementation
Our previously published artifact [22] is a prototype that represents string trace encodings as C++ strings. The

artifact accompanying this paper [23] more efficiently represents trace encodings as C++ bit sets, to take advantage

1Negations (¬) are represented by the ! character, and conjunctions (∧) by the & character. A full grammar for the input syntax pops up when
clicking on the Grammar button in the GUI.
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of the speed of vectorized bitwise operations. C++ bit sets must have their sizes specified at compile time, which is
why the “optimize bits” option is available to recompile with the most optimal number of bits for an input formula.
Technical details of the implementation are available in the online supplementary materials [20].

4. Validation

Although the WEST algorithm is sound and complete, we must validate the tool to ensure that the algorithm is
implemented correctly. Previously, the prototype WEST tool was validated over a set of 1662 MLTL formulas, and
the details of the validation effort and test suite generation were published in [19]. We validate the WEST tool over
the same test suite with the prototype WEST tool, a Binary Decision Diagram (BDD)-based AllSAT solver applied
to Boolean encodings of MLTL formulas[24], the R2U2 tool[25], and an MLTL evaluator [20]. On each of the
1662 MLTL formulas, we check that the the output of the WEST tool is equivalent to the output of the other four
tools, as indicated by the output of the Python verification scripts in our artifact [22]. The FPROGG tool [26] also
independently validates the WEST tool. Figure 6 summarizes the WEST tool validation process.

4.1. WEST Validation

Figure 6: Summary of the WEST tool validation process. WEST is
validated to a high degree of confidence through five different meth-
ods. Bidirectional arrows indicate that the validation process ensures
that the set of satisfying traces produced by the two tools are equiva-
lent, while the unidirectional arrow indicates a subset relationship.

We check that the bit set implementation of WEST is
equivalent to the prototype WEST tool. On each formula
φ of the test suite, the set of satisfying traces produced
by the WEST tool is compared to the set of satisfying
traces produced by the prototype WEST tool, by check-
ing that L(r) = L(r′) where r and r′ are the trace regular
expressions produced by the WEST tool and the proto-
type WEST tool on the same input, respectively.

4.2. AllSAT via BDD Engine
Recent work in MLTL MaxSAT solving [24] pro-

vides a translation from an MLTL formula to a Boolean
formula that is not only equisatisfiable, but also logically
equivalent if the additional variables introduced in the
translation are disregarded. For each φ in the test suite,
we apply the translation and encode the Boolean constraints in a binary decision diagram (BDD) engine. Specifically,
we used the Python library dd, and the pick iter function to enumerate all satisfying assignments for the Boolean
encoding. Lastly, we translate the Boolean assignments into traces, and ensure that the set of traces produced this way
for φ is the same as the set of traces produced by WEST.

4.3. R2U2
The Realizable, Responsive, Unobtrusive Unit (R2U2) is a runtime monitoring tool designed for MLTL specifi-

cations [27]. One byproduct of R2U2’s observer-based monitoring engine is that one can easily use it as an MLTL
evaluator when combined with the C2PO compiler [25]. That is, given a formula φ and a trace π, C2PO compiles the
formula into assembly-like imperative evaluation instructions for R2U2 to determine if π ⊨ φ. For each formula φ in
the test suite, we iterate over all 2mn, where m = complen(φ) the computation length of φ and n = |AP| the number
of atomic propositions, traces and check that the set of satisfying traces produced by WEST is equal to the set of
satisfying traces produced by R2U2.

4.4. Additional Validation
A direct implementation of the MLTL semantics in C++ also validates the WEST tool. The MLTL evaluator [20]

determines π ⊨ φ for trace π and MLTL formula φ. The validation process is the same brute-force enumeration of
traces used in the R2U2 validation process. Lastly, the FPROGG tool [26] implements the MLTL formula progression
algorithm [28] developed for MLTL satisfiability checking. The tool takes as input an MLTL formula and produces
a single trace that satisfies the formula by iteratively calling a SAT solver. The FPROGG validation exercise in [26]
independently checked that the trace produced by FPROGG was amongst the traces produced by WEST, over their
test suite of 55 MLTL formulas.
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5. Experimental Benchmarking

We demonstrate the performance of the WEST tool on randomly generated MLTL formulas. Our random formula
generator takes as parameters the number of atomic propositions n, the maximum nesting depth of the formula d, the
maximum value of interval bounds b, and the probability p of a temporal operator at each node of the formula’s syntax
tree. We show the results of three experiments, in which we vary n, d, and b, while keeping the other parameters fixed.
p is fixed at 0.5 for all experiments, in order to generate formulas with nontrivial Boolean and temporal structures.
For each value of the parameter being varied, we generate 250 random MLTL formulas, and record the average time
and number of trace regular expressions produced by WEST for each formula. We ran these experiments on the Iowa
State Nova Cluster [29], on a node with an Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz with 384GB of RAM.

The results shown in Figures 7a and 7b demonstrate that b and d have a significant impact on the run time and
number of trace regular expressions produced by WEST. This is expected, since a longer computation length b can be
equivalently captured by appropriate nesting of temporal operators. The results shown in Figure 7c demonstrate that
the number of atomic propositions n has a less significant impact on the tool’s performance.

The case study presented in [30] affirms that the WEST tool is sufficiently performant for visualizing MLTL for-
mulas that can feasibly be written and comprehended by humans during the design and specification process. Across
four separate aerospace systems, over 200 person-hours were spent on the elicitation of 422 MLTL specifications
matching one of four patterns: 1. G[0,M]a0

2. G[0,M] (F[0,N]a0) 3. G[0,M](a0 → F[0,N]a1) or 4. G[0,M](a0 → (a0 U[0,N] a1)).
N and M are integers, and each ai is a propositional logic formulas that can be as simple as just p0, but no more
complicated than ¬p1 → (p2 ∨ p3), for example. Even in the fourth pattern, the most complex one, nesting depth
d does not exceed 5 and the number of variables n does not exceed 6, which are within reasonable bounds for the
WEST tool. Lastly, the value of b is dependent on how the designer chooses to model the system. Modeling a real
system often necessitates higher-level abstraction of the system, and limiting the maximum value of interval bounds
b to 10, for example, still gives reasonable freedom to specify the system’s behavior in different stages of its target
environment (such as in the launching, boosting, coasting, and descent phases of a sounding rocket [9]).

(a) Maximum interval bound b varies, fixed number
of atomic propositions n = 4, fixed maximum nesting
depth d = 2.

(b) Maximum nesting depth d varies, fixed number of
atomic propositions n = 4, fixed maximum interval
bound b = 3.

(c) Number of atomic propositions n varies, fixed max-
imum nesting depth d = 2, fixed maximum interval
bound b = 8.

Figure 7: Performance of the WEST tool on randomly generated MLTL formulas. Each experiment varies over different values of one parameter
while keeping all other variables fixed. Each datapoint is an average over 250 randomly generated MLTL formulas.

6. Impact and Future work

The WEST tool is a useful visualizer for MLTL formulas that provides the first interactive tool for validating
MLTL specifications. This will aid system designers in the elicitation of specifications from English requirements.
The improved explanability of formulas through visualizing and interacting with traces will make it easier for de-
signers to demonstrate the correctness of their specifications. Additionally, WEST is now tied into the continuous
integration testing of the R2U2 tool, which now reruns our validation test suite after significant updates to R2U2. The
development of future tools for MLTL can similarly leverage WEST for validation testing.

Future work to the GUI includes additional visualization options, such as signal representations of traces, display-
ing automata representations of the input MLTL formula, and alternative visualizations. The WEST algorithm gives
a translation of MLTL into regular expressions, which have a canonical translation to finite automata.
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