
Formally Verifying a Transformation from MLTL

Formulas to Regular Expressions

Zili Wang1[0000−0003−1730−6180], Katherine Kosaian2[0000−0002−9336−6006], and
Kristin Yvonne Rozier1[0000−0002−6718−2828]

1 Iowa State University, Ames, IA, USA
2 University of Iowa, Iowa City, IA, USA

{ziliw1,kyrozier}@iastate.edu, katherine-kosaian@uiowa.edu

Abstract. Mission-time Linear Temporal Logic (MLTL), a widely used
subset of popular speci�cation logics like STL and MTL, is often used
to model and verify real world systems in safety-critical contexts. As
the results of formal veri�cation are only as trustworthy as their input
speci�cations, the WEST tool was created to facilitate writing MLTL
speci�cations. Accordingly, it is vital to demonstrate that WEST itself
works correctly. To that end, we verify the WEST algorithm, which con-
verts MLTL formulas to (logically equivalent) regular expressions, in the
theorem prover Isabelle/HOL. Our top-level result establishes the cor-
rectness of the regular expression transformation; we then generate a
code export from our veri�ed development and use this to experimen-
tally validate the existing WEST tool. To facilitate this, we develop some
veri�ed support for checking the equivalence of two regular expressions.

Keywords: MLTL · Regular Expressions · Interactive Theorem Proving
· Isabelle/HOL · Code Generation · Tool Validation

1 Introduction

As formal methods tools become increasingly integrated into system develop-
ment life cycles, it is necessary to o�er stronger demonstrations of their correct
implementation than piecemeal code analysis and experimental validation. After
all, these are the tools justifying and verifying, e.g., the certi�cation of systems;
these tools must obey a higher standard for correctness. This starts with their
input languages and speci�cation validation.

Many formal methods tools, such as model checkers and runtime veri�cation
engines, reason over behavior speci�cations in LTL or related linear-time logics
that extend LTL, e.g., to add intervals on the temporal operators like Signal
Temporal Logic (STL) [32], Metric Temporal Logic (MTL) [1], and Metric In-
terval Temporal Logic (MITL) [2]. Mission-time Linear Temporal Logic (MLTL)
[40,30] represents a commonly used subset of these timed logics, and has a con-
version to LTL [30]. Several tools use MLTL as a core speci�cation language;
these include the Formal Requirements Elicitation Tool (FRET) [19,34,4], the

2 Wang et al.

Realizable Responsive Unobtrusive Unit (R2U2) [40,43,23], and the Ogda run-
time monitoring tool [37,35,36]. Popular symbolic model checker nuXmv [9]
supports a subset of MLTL [25] by allowing bounds on the Globally and Fu-
ture operators (but not on Until or Release). The WEST tool [17,51] transforms
MLTL formulas into logically equivalent (and easier to analyze) regular expres-
sions and facilitates the validation of MLTL speci�cations with an interactive
GUI. Since WEST validates speci�cations, which are the fundamental basis for
formal veri�cation, it is especially critical to rigorously establish its correctness.

The research community has long recognized that speci�cation is the biggest
bottleneck in formal methods [42]; to that end LTL is formalized in Coq [14], in
PVS [38], and in Isabelle/HOL [47], along with many algorithms for its use in for-
mal veri�cation [48,45,46,44,18]. Libraries for related linear-time logics were in-
spired by, or directly built upon those for LTL, including formalizations of MTL
in Coq [10] and PVS [12,50]; a PVS formalization of MITL [41]; and Isabelle
formalizations of the 3-valued variant LTL3 [3] and MLTL [27]. Further, the
importance of ensuring correctness of formal methods tools naturally prompts
using these formalizations to generate tools. For instance, an Isabelle/HOL for-
malization of the VeriMon tool for monitoring metric �rst-order temporal logic
(MFOTL) generates (via code export) VeriMon's codebase [8]. An Isabelle/HOL
formalization of a metric dynamic logic (MDL) runtime monitoring algorithm
also generated the Vydra tool [39].3 In Coq, a formalization of monitoring past-
time MTL generates an OCaml monitoring engine [11].

We enrich this space by formalizing the WEST algorithm for speci�cation
validation. Building on an existing MLTL library in Isabelle/HOL [27,26], we
formally prove that the WEST algorithm generates regular expressions that are
logically equivalent to the input MLTL formulas, �lling in details omitted from
the original tool's correctness proofs. From our formalized algorithms, we gener-
ate a new implementation of WEST to validate the (unveri�ed) implementations
of WEST: the proof-of-concept original [17] and a highly optimized refactoring
[51]. As WEST validates other MLTL tools, most notably the runtime veri�ca-
tion engine R2U2 [40], our work helps to foster trust in a safety-critical space.
Our experiments also show that our Isabelle-generated code is (in aggregate)
close in performance to the optimized, unveri�ed version of WEST.

Section 2 recaps the existing Isabelle/HOL MLTL library [27,26], introduces
the trace regular expressions fundamental to the WEST algorithm, and sets up
the de�nitions underlying our formalization. Section 3 presents our formalization
of the WEST algorithm. Section 4 gathers our formalization insights to inform
future e�orts that build on our contributions. Section 5 experimentally evaluates
the new version of WEST generated via Isabelle's code export utility in compar-
ison with two previous, hand-coded versions [17,51], while Section 6 concludes
with a discussion. Our formalization (totaling ≈ 7400 lines of code) is available
on the Archive of Formal Proofs (AFP) [52].

3 Vydra also reasons with regular expressions in the input language, rather than using
regular expression to represent the input, as WEST does.

Verifying MLTL to Regular Expressions 3

2 MLTL and Regular Expressions

In this section, we present the syntax and semantics of MLTL and explain our
formalization of the WEST regular expressions used by the WEST tool, high-
lighting some key datatypes; when appropriate, we intersperse mathematical
de�nitions with Isabelle/HOL code. We also introduce some useful functions
that are important in the correctness proofs later on.

Other works formalize regular expressions in di�erent contexts. An algorithm
for matching extended regular expressions via symbolic derivatives was formal-
ized in Lean [56], and the Myhill-Nerode theorem was restated in Isabelle/HOL
using regular expressions (instead of automata, which is more common) [54].
There has also been work formalizing decision procedures to check equivalence
of regular expressions in Rocq [13] and Isabelle/HOL [29]. The latter is partic-
ularly relevant; we are interested in potentially incorporating it in future work
to improve our (currently naive) regular expression checking procedure.

2.1 Syntax and Semantics of MLTL

Let AP be a �nite set of atomic propositions. Let p ∈ AP be an atomic propo-
sition, and a, b ∈ N be natural numbers such that a ≤ b; MLTL formulas are
de�ned by the following grammar; the temporal operators F, G, U, R denote �Fu-
ture�, �Globally�, �Until�, and �Release�, respectively.

ϕ, ψ := True | False | p | ¬ϕ | ϕ∧ψ | ϕ∨ψ | F[a,b]ϕ | G[a,b]ϕ | ϕU[a,b]ψ | ϕR[a,b]ψ.

A trace π is a �nite sequence π = π[0], π[1], . . . of sets of atomic propositions,
where π[i] ⊆ AP for all i. We refer to the i-th element of a trace π as the i-th
state of the trace, and intuitively interpret π[i] as the set of propositions that
are true at time i. We denote the length of a trace π by |π|, and the su�x of a
trace π starting at time i by πi; that is, πi = π[i], π[i + 1], . . . and π0 = π. The
existing MLTL library in Isabelle/HOL [26] encodes a trace as a list of sets of
natural numbers; each set represents the atomic propositions that are true at
each timestep. For example, the trace π = {p0, p1}, {p0} is encoded in Isabelle
as the [{0, 1}, {0}], which has type nat set list.

A trace π satis�es an MLTL formula ϕ, denoted π |= ϕ, as follows [40,30],
where ψ is another MLTL formula:

π |= p i� p ∈ π[0]
π |= ϕ ∧ ψ i� π |= ϕ and π |= ψ

π |= ¬ϕ i� π ̸|= ϕ

π |= ϕ ∨ ψ i� π |= ϕ or π |= ψ

π |= F[a,b]ϕ i� |π| > a and ∃i ∈ [a, b]. πi |= ϕ

π |= G[a,b]ϕ i� |π| ≤ a or ∀i ∈ [a, b]. πi |= ϕ

π |= ϕ U[a,b]ψ i� |π| > a and ∃i ∈ [a, b]. (πi |= ψ and ∀j ∈ [a, i− 1]. πj |= ϕ)

π |= ϕ R[a,b]ψ i� |π| ≤ a or (∀i ∈ [a, b]. πi |= ψ) or ∃j ∈ [a, b− 1]. (πj |= ϕ and

∀k ∈ [a, j] πk |= ψ)

4 Wang et al.

2.2 Trace Regular Expressions

The WEST algorithm [17] takes an MLTL formula as input and recursively
computes a WEST regular expression representing exactly the set of traces that
satisfy that formula. Intuitively, we can think of this as happening in two steps.
First, we represent traces as bit strings; here, instead of encoding each state
in a trace as a set, we encode each state as a bit string of length n (where n
is the number of variables in the formula). Next, we de�ne WEST regular
expressions (WEST regexes) as a compact way to represent a set of traces.

More precisely, we assume that AP = {p0, p1, . . . , pn−1} and impose (with-
out loss of generality) an ordering on these atomic propositions; we use this
ordering to construct the bit string of a trace π of length m as the length mn
string of 0's and 1's such that the value of atomic proposition pk at timestep
i corresponds to the (ni + k)-th character of the bit string [17, De�nition 2].

Fig. 1: For AP = {p0, p1}, the bit
string of trace {p0}, {p0, p1}, {}, {p1}
is 10,11,00,01 (following the source
material [17], we use commas to
separate timesteps for readability)
which is encoded in Isabelle as
[[1,0], [1, 1], [0, 0], [0, 1]]

(type nat list list).

We visualize an example in Fig. 1. We en-
code bit strings in Isabelle as lists of lists.

In Isabelle/HOL, we obtain an ordering
on our set of atomic propositions by con-
straining them to be natural numbers, of
type nat. Following WEST's implementa-
tion [51], we choose not to �x n globally
(which we could accomplish using a locale
[6,7]) but instead pass the number of vari-
ables as an argument to the helper func-
tions in the WEST algorithm (in the top-
level function, we compute the right value
to pass to the helper functions).

We then collate these bit string repre-
sentations in trace regular expressions,4

or trace regexes for short, which are strings
consisting of 0, 1, and S, where S is a shorthand for the regular expression 0|1. For
example, �xing the number of atomic propositions to be n = 3, the trace regex
10S matches only the two bit strings 101 and 100 (each representing a trace
of length 1), and the trace regex S00,0S0 matches the four bit strings (each
representing a length 2 trace) �100,010�, �100,000�, �000,010�, and �000,000�.

In Isabelle/HOL, trace regexes have type WEST_bit list list, where our cus-
tom datatype WEST_bit is comprised by Zero, One, and S. We represent trace
regexes with WEST_bit list list and not WEST_bit list because the number of
atomic propositions, n, is critical for the interpretation of traces from their bit
string representations. We must ensure that each WEST_bit list, referred to as
a state regex, has length n in the overall list; having a list of lists facilitates
this check. For this, we de�ne the function trace_regex_of_vars which takes as
inputs trace regex r and the number of atomic propositions n, and checks that
each state regex in r has length n. Here, ! is Isabelle/HOL syntax for the i -th
element of L.
4 Also called temporal regular expressions [17, De�nition 4].

Verifying MLTL to Regular Expressions 5

de�nition trace_regex_of_vars::"trace_regex ⇒ nat ⇒ bool"

where "trace_regex_of_vars r n = (∀ i<length r. length (r!i) = n)"

Then, we build a list of trace regexes as a WEST_regex of type WEST_bit

list list list, the �nal return type of the WEST algorithm. A WEST regex
L is well-de�ned for n atomic propositions if each trace regex r in L satis�es
trace_regex_of_vars r n. We summarize the datatypes of objects in our encod-
ing in Table 1. While the nested lists may seem unwieldy at �rst glance, they
ensure modularity in the implementation and, more crucially, in the correct-
ness proofs. We turn to an example of this modularity now, as we build up to
formalizing the notion of a WEST regex matching a trace.

Terminology Description Isabelle Type

WEST bit Custom Isabelle datatype WEST_bit

state regex List of WEST bits that encodes states as bit strings WEST_bit list

trace regex
List of WEST states that represents
sets of traces compactly as regular expressions

WEST_bit list list

WEST regex
List of WEST traces that represents the union of
all sets of traces represented by the WEST traces

WEST_bit list list list

Table 1: Summary of the datatypes of each object in our encoding.

2.3 Useful De�nitions

The notion of matching is foundational to the WEST algorithm because it is
crucial for connecting the semantics of MLTL formulas to the semantics of WEST
regexes. We de�ne that a state regex r matches a state if r equals the bit string
representation of the state or if r generalizes the bit string by replacing some
characters in the bit string with S's. This notion lifts to traces: a trace regex r
matches a trace π i� r matches the bit string representation of π. Furthermore,
we may lift this to WEST regexes. For trace regexes r1, r2, ..., rk, we can combine
them by alternations as r1|r2|...|rk; we abbreviate this as the WEST regex L =
[r1, r2, ..., rk], and de�ne that L matches a trace π i� some ri matches π.

We contribute a formal mathematical de�nition of the notion of matching,
which previous work [17] supplied only an intuition for. We do this in three steps.
First, we de�ne matching a state regex (of type WEST_bit list) to a state in a
trace (of type nat set) in the de�nition match_timestep :

de�nition match_timestep:: "nat set ⇒ state_regex ⇒ bool"

where "match_timestep state r = (∀ i < length r.

(r ! i = One −→ i ∈ state) ∧ (r ! i = Zero −→ i /∈ state))"

This de�nition checks that for all i, r!i equaling One implies the i-th atomic
proposition pi holds at the input state (i.e., pi ∈ state), and r!i equaling Zero

implies pi does not hold at this state. If r!i is S, then pi can be either true or
false at this state. For example, the state regex [0, 1, S] matches {1} and {1, 2}.

Next we de�ne matching a trace regex (of type WEST_bit list list) to a
trace (of type nat set list) in the de�nition match_regex :

6 Wang et al.

de�nition match_regex:: "trace ⇒ trace_regex ⇒ bool"

where "match_regex π r = ((∀ time<length r.

(match_timestep (π ! time) (r ! time)))∧(length π ≥ length r))"

This de�nition takes as input a trace π and a trace regex r, and checks that
match_timestep holds for all regex states in trace (i.e., for all r ! time) on the
corresponding state in the trace (π ! time). It also checks that the length of π
is at least the length of r (a well-de�nedness condition, as we need to access π
! time for all time up to the length of r).

Finally, we de�ne matching a WEST regex (of type WEST_bit list list

list) to a trace (of type nat set list) in the de�nition match :

de�nition match:: "trace ⇒ WEST_regex ⇒ bool"

where "match π L = (∃ i < length L. match_regex π (L ! i))"

This de�nition checks that match_regex holds for some trace regex L ! i in L and
the trace π. We may intuitively view WEST regexes as compactly representing
the behavior of a set of traces; then, the WEST algorithm transforms a given
MLTL formula into a WEST regex that captures the set of satisfying traces.

Another important function, WEST_num_vars, counts the number of atomic
propositions in a given MLTL formula by recursively computing the maximum
number of atomic propositions in all subformulas. For example, WEST_num_vars
of an atomic proposition p is p+1 (as atomic propositions are indexed from 0),
and WEST_num_vars of And_mltl φ ψ is the maximum of WEST_num_vars φ and
WEST_num_vars ψ. This function is used frequently in our correctness results.

3 Formalizing the WEST Algorithm

Fig. 2: High-level overview of key
components in our formalization of the
WEST algorithm.

Intuitively, the WEST algorithm recur-
sively computes a list of trace regexes
for the subformulas of an MLTL formula,
and then combines these lists using the
WEST_and and WEST_or operations for tak-
ing intersections and unions of sets of
traces. The �nite semantics of MLTL for-
mulas ensures that all existential and uni-
versal quanti�ers can be translated to a �-
nite number of WEST_and and WEST_or op-
erations on trace regexes; thus the WEST
algorithm directly de�nes the temporal op-
erators in terms of WEST_and and WEST_or.
For these temporal operators, we also
need a shifting operation, shift, which
the source material [17] implicitly uses but
does not explicitly de�ne. Intuitively, shift
ensures that we are analyzing the locations

Verifying MLTL to Regular Expressions 7

in the trace speci�ed by the temporal operators; we will see this in an example
in Sect. 3.2. Fig. 2 visualizes the overall structure of the WEST algorithm.

We �rst discuss our formalization of the core operators WEST_and and WEST_or

along with our formalization of an important simpli�cation step in Sect. 3.1.
Then, we present how the temporal operators are built on top of these core
operators in Sect. 3.2, using the shift operation. Finally, we discuss the top-
level WEST algorithm WEST_reg and our overall correctness result in Sect. 3.3.

3.1 The Core Operations of WEST

The WEST_or operation simply combines two WEST regexes (i.e., lists of trace
regexes) into one WEST regex. We implement this in Isabelle/HOL using the
built-in @ operator for list concatenation. The top-level correctness theorem
shows that for two WEST regexes L1 and L2, L1 matches a trace π or L2 matches
π i� L1@L2 matches π. We formally state this as the WEST_or_correct lemma.

lemma WEST_or_correct:

�xes π::"trace" and L1 L2::"WEST_regex"

shows "match π (L1@L2) ←→ (match π L1) ∨ (match π L2)"

Next, the WEST_and operation takes as input two lists of trace regexes and
computes a list of trace regexes representing the intersection of the sets of traces
represented by the input lists. We visualize the intended semantics of this opera-
tion in Fig. 3. One notable point here is that WEST_and Zero One is None, because
it is impossible for a bit in a trace regex to simultaneously equal Zero and One.
In Isabelle/HOL, we formalize WEST_and in four steps: �rst we de�ne an oper-
ation between two bits, then between two regex states, then between two trace
regexes, and �nally between two WEST regexes.

The lowest-level operation between two bits (each of type WEST_bit) is de�ned
in the function WEST_and_bitwise as follows:

fun WEST_and_bitwise:: "WEST_bit⇒WEST_bit⇒WEST_bit option" where

"WEST_and_bitwise b One = (if b=Zero then None else Some One)"

| "WEST_and_bitwise b Zero = (if b=One then None else Some Zero)"

| "WEST_and_bitwise b S = Some b"

This operation re�ects the desired semantics visualized in Fig. 3 by using
option types to return None when the set intersection is empty. For example,
WEST_and_bitwise S Zero is Some Zero, while WEST_and_bitwise One Zero is None.

This operation is then lifted to two regex states in WEST_and_state ; here,
we apply WEST_and_bitwise to each pair of corresponding bits in the two regex
states. If None is returned for any pair, then the function returns None for the
entire regex state. Note that the lengths of the two regex states must be the
same (i.e., equal to n, the number of atomic propositions), and this operation
returns None if they are not. Then, we again lift WEST_and_state to operate on
two trace regexes in the function WEST_and_trace by applying WEST_and_state to
each pair of corresponding regex states in the two trace regexes, returning None

8 Wang et al.

if any of the calls to WEST_and_state returns None. The input trace regexes are
allowed to have di�erent lengths, and the shorter trace regex is treated as if the
missing regex states are all S, following [17, De�nition 4, Pad]. The full formal
de�nitions can be found in our formalization [52].

Fig. 3: Operations table for WEST_and_bit operation for bits (left), and two examples
of WEST_and between regex states and traces (middle and right).

To establish the correctness of WEST_and, we prove the following lemma:

lemma WEST_and_correct:

�xes π::"trace" and L1 L2:: "WEST_regex"

assumes L1_of_num_vars: "WEST_regex_of_vars L1 n"

assumes L2_of_num_vars: "WEST_regex_of_vars L2 n"

shows "(match π L1 ∧ match π L2) ←→ match π (WEST_and L1 L2)"

This shows that for input WEST regexes L1 and L2, both L1 and L2 match trace
π i� the WEST_and of L1 and L2 matches π. In other words, the set of traces that
the WEST_and of L1 and L2 matches is exactly the intersection between the set of
traces that L1 matches and the set of traces that L2 matches. The assumptions
on L1 and L2 are well-de�nedness conditions that ensure all state regexes have
length n (the number of atomic propositions), as required by WEST_and_state.

To keep the sizes of WEST regexes small, WEST implements an additional
simpli�cation step which collects together related trace regexes. If two trace
regexes di�er only by a single bit, then they may be combined into one trace regex
where the di�ering bit is S. For example, �xing the number of atomic propositions
to n = 2, the WEST regex [[[0,0],[0,1]], [[0,0],[0,0]], [[0,1],[0,S]]]

may �rst be reduced (by combining the �rst two trace regexes) to [[[0,0],[0,S]],
[[0,1],[0,S]]], and then to [[[0,S],[0,S]]]. This is crucial for improving the
tool performance, as it helps to mitigate blowup in the length of the list of trace
regexes during the WEST_and and WEST_or operations [17, Section 4].

The underlying idea is straightforward: greedily simplify pairs of regexes until
no more pairs can be simpli�ed; we implement this in the WEST_simp function.
It is crucial that the simpli�cation step does not change the set of traces that
a WEST regex matches. The following lemma shows that, for a well-de�ned
WEST regex L, a trace π matches L i� π matches the simpli�cation of L :

lemma WEST_simp_correct:

�xes L::"WEST_regex" and π::"trace" and n::"nat"

Verifying MLTL to Regular Expressions 9

assumes "WEST_regex_of_vars L n"

shows "match π (WEST_simp L n) ←→ match π L"

Finally, we de�ne the functions WEST_and_simp and WEST_or_simp by passing the
output of WEST_and and WEST_or (respectively) to WEST_simp. The correctness of
WEST_and_simp and WEST_or_simp follows directly from the correctness results for
WEST_and, WEST_or, and WEST_simp.

3.2 Temporal Operators

Our formalization of the temporal operators in the WEST algorithm uses the
WEST_and_simp and WEST_or_simp operators. It also uses an operation to shift
regular expressions to later timesteps, which we call shift. Though the source
material never explicitly de�nes this shift operation, it uses it implicitly and
de�nes an analogous operation [17, De�nition 5]. We formalize shift as follows:

fun shift:: "WEST_regex ⇒ nat ⇒ nat ⇒ WEST_regex"

where "shift L n t = map (λtrace. (arbitrary_trace n t)@trace) L"

Here, we refer to a state regex of all S 's as an arbitrary state, and we refer to
a trace regex of all arbitrary states as an arbitrary trace [17, Section 6]. In this
snippet, arbitrary_trace n t constructs an arbitrary trace regex containing t

arbitrary states of length n. Then, shift takes as input a WEST regex L, and
appends an arbitrary trace of t arbitrary states to the front of each trace regex
in L. As intuitively named, shift shifts all trace regexes in L by t timesteps.

For example, �xing the number of atomic propositions at n = 2, the WEST
regex L = [[[1,1]], [[0,0], [0,0]]] captures that either p0 and p1 both need
to be true at timestep 0, or p0 and p1 both need to be false at timesteps 0
and 1. If instead we want to delay this behavior for p0 and p1 by 3 timesteps,
we can compute shift L 2 3, which returns [[[S,S],[S,S],[S,S],[1,1]], [[S,

S],[S,S],[S,S],[0,0],[0,0]]]. The following lemma formalizes the connection
between the shift operation for WEST regexes and the su�x of a trace:

lemma shift_match_property:

assumes "length π ≥ t"

shows "match (drop t π) L ←→ match π (shift L num_vars t)"

More precisely, shift_match_property establishes that a su�ciently long trace π
matches a WEST regex L shifted by t timesteps i� the su�x of π with t states
removed, denoted drop t π, matches L.

Now, we demonstrate how the temporal operators are built on top of the core
WEST operators. We provide for an example WEST_global, de�ned as follows:

fun WEST_global:: "WEST_regex ⇒ nat ⇒ nat ⇒ nat ⇒ WEST_regex"

where "WEST_global L a b n = (if (a = b) then (shift L n a)

else (if (a < b) then (WEST_and_simp (shift L n b)

10 Wang et al.

(WEST_global L a (b-1) n) n) else []))"

WEST_global takes as input a WEST regex L, lower and upper interval bounds
a and b, and the number of atomic propositions n. WEST_global then uses the
shift operation to shift the input regex L by b timesteps, and computes the
WEST_and of the shifted L and WEST_global with b-1. Intuitively, L captures a set
of traces specifying some behavior at timestep 0, and the successive shift and
WEST_and operations ensures that L 's behavior happens at all timesteps between
a and b. The remaining temporal operators are de�ned in a similar manner,
using shift and the core WEST operators.

We establish the correctness of the WEST_global operator as follows:

lemma WEST_global_correct:

�xes L::"WEST_regex" and φ::"nat mltl" and π::"trace"
assumes semantics_φ: "

∧
π. (length π ≥ complen_mltl φ −→

(match π L ←→ semantics_mltl π φ))"
assumes L_vars: "WEST_regex_of_vars L n"

assumes φ_vars: "WEST_num_vars φ ≤ n" and "a≤b"
assumes trace_len: "length π ≥ (complen_mltl φ) + b"

shows "match π (WEST_global L a b n) ←→
semantics_mltl π (Global_mltl φ a b)"

This lemma says that for a WEST regex L over n variables (assumption L_vars)
that captures the semantics of an MLTL formula φ of at most n variables (as-
sumption semantics_φ and φ_vars), and a trace π of su�cient length, WEST_global
φ a b n matches π i� π satis�es the semantics of Global_mltl φ a b (represent-
ing the formula G[a,b]ϕ).

Likewise, each of the remaining temporal operators has a correctness lemma
that establishes the connection between the WEST regex it computes and its
corresponding temporal operator. The correctness lemmas for the temporal op-
erators totaled about 850 lines of code.

3.3 Top-Level Algorithm and Correctness

TheWEST algorithm takes as input an MLTL formula ϕ in negation normal form
(NNF) and recursively computes the WEST regex representing the set of traces
with length at least the computation length of φ that satisfy the formula. The
existing Isabelle/HOL MLTL library [27] already formalizes the computation
length5 of ϕ, denoted complen(ϕ), which intuitively measures how much time is
needed to decide the satis�ability of ϕ [17,24,27].

We formalize the WEST algorithm in the function WEST_reg as follows:

5 This is also known as the worst-case propagation delay in the context of runtime
veri�cation [24,55].

Verifying MLTL to Regular Expressions 11

fun WEST_reg:: "nat mltl ⇒ WEST_regex"

where "WEST_reg φ = (let nnf_φ = convert_nnf φ in

WEST_reg_aux nnf_φ (WEST_num_vars φ))"

Although input formulas to the WEST algorithm must be in NNF, we allow
formulas of all shapes as input and apply the convert_nnf function from the
existing MLTL formalization [27] to transform the input formula to NNF. The
resultant NNF formula nnf_φ and the number of atomic propositions, computed
as WEST_num_vars φ, are then passed to the auxiliary function WEST_reg_aux. This
auxiliary function takes two inputs (a nat mltl formula φ and a natural number
n for the number of atomic propositions) and cases on the structure of φ to
apply the appropriate core operators and return a WEST regex.

We consider here a few representative cases: True, Prop_mltl, And_mltl, and
Global_mltl (corresponding to the cases of True, an atomic proposition, a con-
junction, and the global operator). Mathematically, these cases are de�ned in
the source material as follows [17]: reg(True) = Sn, reg(pk) = Sk1Sn−k−1, and
reg(ϕ∧ ψ) = reg(ϕ)∧ reg(ψ). The global operation, reg(G[a,b]ϕ) computes (re-
cursively) the WEST_and of reg(ϕ) shifted by i timesteps for all i with a ≤ i ≤ b
(note this is essentially what WEST_global computes). In Isabelle/HOL, we have:

WEST_reg_aux:: "(nat) mltl ⇒ nat ⇒ WEST_regex"

where "WEST_reg_aux True_mltl n = [[(map (λ j. S) [0 ..< n])]]"

| "WEST_reg_aux (Prop_mltl p) n =

[[(map (λj. (if (p=j) then One else S)) [0 ..< n])]]"

| "WEST_reg_aux (And_mltl φ ψ) n = (WEST_and_simp

(WEST_reg_aux φ n) (WEST_reg_aux ψ n) n)"

| "WEST_reg_aux (Global_mltl φ a b) n =

WEST_global (WEST_reg_aux φ n) a b n"

Here, map f L applies a function f on every element of a list L, so the base
case for True_mltl creates a WEST regex containing a trace regex of all S 's. In
the case Prop_mltl p, the map function takes as input j and returns One if the
propositional variable p equals the index j, and otherwise S. In And_mltl, we
directly call the WEST_and operator; likewise in Global_mltl.

Top-Level Correctness. A central contribution of our work is proving (and even
slightly generalizing) the correctness of the WEST_reg_aux function and elucidat-
ing many of the details omitted in the original proof of correctness. Theorem 2 in
the source material states the correctness result as follows: for a MLTL formula
ϕ in negation normal form, a trace π with length complen(ϕ) satis�es ϕ i� π
matches reg(ϕ) [17]. We formalize this in the theorem WEST_reg_aux_correct :

theorem WEST_reg_aux_correct:

�xes π::"trace" and φ::"nat mltl" and n::"nat"

assumes π_long_enough: "length π ≥ complen_mltl φ"
assumes is_nnf: "∃ ψ. φ = (convert_nnf ψ)"
assumes φ_nv: "WEST_num_vars φ ≤ n"

12 Wang et al.

assumes "intervals_welldef φ"

shows "match π (WEST_reg_aux φ n) ←→ semantics_mltl π φ"

This theorem states that for MLTL formula φ in NNF (assumption is_nnf)
with at most n variables (assumption φ_nv) and well-de�ned interval bounds
(assumption intervals_welldef φ) and a trace π of length at least complen(φ)
(assumption π_long_enough), the trace π satis�es φ i� the trace π matches the
WEST regex computed by WEST_reg_aux φ n. Here, the functions convert_nnf,
complen_mltl, and intervals_welldef are from the existing MLTL formalization
[26]. The φ_nv is an implicit assumption in the source material, which globally
�xes the number of atomic propositions.6 We slightly generalize the original
correctness result, as our formal result holds for all traces of length at least
the computation length of φ rather than just the traces of length equal to the
computation length of φ.

We prove this by structural induction on the input formula φ. The is_nnf

assumption allows us to use the custom induction rule nnf_induct from the
existing MLTL formalizing [26], simplifying the induction proof. The base cases
are straightforward, and the inductive cases are proven by applying the inductive
hypothesis on the subformulas and using the correctness lemmas for the core
WEST operators. For instance, for input formula φ = Global_mltl ψ a b (which
is G[a,b]ψ), the inductive hypothesis gives us that the trace π satis�es ψ i� the
WEST regex L computed by WEST_reg_aux ψ n matches π. Next, in order to
apply the correctness result of the WEST_global operator, we need to show that L
is a WEST regex over n atomic propositions (i.e., each state regex in each trace
regex in L is of length n). For this, we prove the lemma WEST_reg_aux_num_vars :

lemma WEST_reg_aux_num_vars:

�xes φ::"nat mltl"

assumes is_nnf: "∃ ψ. φ = (convert_nnf ψ)"
assumes "WEST_num_vars φ ≤ n" and "intervals_welldef φ"

shows "WEST_regex_of_vars (WEST_reg_aux φ n) n"

This lemma states that, for a formula φ in NNF with at most n atomic propo-
sitions, the WEST regex computed by WEST_reg_aux φ n is a WEST regex over
n atomic propositions. With this, we can apply the correctness result of the
WEST_global operator on L and complete the proof of the Global_mltl case.

Finally, we present the top-level correctness result for the WEST algorithm:

theorem WEST_reg_correct:

�xes φ::"nat mltl" and π::"trace"
assumes "intervals_welldef φ"
assumes π_long_enough: "length π ≥ complen_mltl φ"

shows "match π (WEST_reg φ) ←→ semantics_mltl π φ"

6 Note that we crucially assume that the number of variables of φ is ≤ n instead of
= n in order to satisfy the inductive hypothesis in our (inductive) proof.

Verifying MLTL to Regular Expressions 13

This theorem states that for any MLTL formula φ with well-de�ned interval
bounds [27] and any trace π of length at least the computation length of φ, π
satis�es φ i� the WEST regex WEST_reg φ matches π. The correctness of the
top-level WEST algorithm took about 600 LOC in Isabelle/HOL compared to
the 60 or so lines of proof sketches in the source material [17, Appendix III].7

4 Formalization Insights

Retrospectively viewing our formalization at a high level, we highlight a few
notable points. First, our modular de�nitions did considerably streamline our
correctness proofs. Many proofs have relatively similar structures, which helped
guide the formalization at a high level. However, we also found that relatively
short proofs in the source material became lengthy in the formalization, in part
because they often split into many subcases. For example, the notion of a WEST
regex matching a trace is intuitively simple, but the formalization used several
helper functions. As another example, the proof of WEST_and_correct is approx-
imately 15 lines of a proof sketch in the source material [17, Theorem 4]. How-
ever, our formal development took approximately 1800 LOC to state and prove
this result level by level, starting from the correctness of the and operation on
state regexes, then on trace regexes, and �nally on WEST regexes. Although
these proofs had structural similarities, subtle di�erences between the operators
complicated the low-level details of the proofs; for instance, the option types of
WEST_and_state required careful analysis in the correctness proofs.

Second, our formalization makes all details explicit, including details omitted
in the source material. Many of our formal proofs are by induction; setting up
the �right� inductive structure in a formal setting requires careful analysis that is
often glossed over in source material. For instance, the top-level correctness theo-
rem required making a mathematically implicit assumption on num_vars explicit.
Setting up this assumption in the wrong way leads to an ine�ective inductive
structure. As another example, in the proof of WEST_simp_correct, we perform
a tricky induction on the di�erence between the length of the input WEST
regex and the output simpli�ed WEST regex. Additionally, we are required to
prove that all functions terminate. For many functions, Isabelle/HOL proves this
automatically [28], but we occasionally ran into cases where we had to explic-
itly construct a measure to prove termination. For example, the WEST_reg_aux

function and the WEST_simp function required such manual termination proofs.
Intuitively, WEST_reg_aux recurses on all subformulas in NNF, converting subfor-
mulas to NNF as necessary; accordingly, we use a termination measure that is
similar to the number of nodes in the abstract syntax tree (AST) of the formula,
but weighs nodes that are not in NNF more heavily. This allows us to prove that
WEST_reg_aux terminates, as this measure strictly decreases on every recursive
call. Further, for WEST_simp, the length of the input list is not strictly decreasing,
but the list of candidate pairs for simpli�cation will be exhausted at some point,

7 The results leading up to this top-level theorem required an additional ≈ 5300 LOC.

14 Wang et al.

so we use a measure that combines the length of the input list with the length
of remaining candidate pairs.

Overall, integrating WEST_simp into our formalization was rather involved.
Our initial formalization did not include WEST_simp, but we ultimately realized
that it is crucial for speed and thus also important for tool validation. While
the modular nature of our formalization easily allowed us to add in this function
to the algorithm, its correctness proofs were intricate. Similarly to WEST_and, we
proved the correctness of WEST_simp level by level, totaling around 1300 LOC.

As a �nal interesting point, we found during our tool validation that WEST_reg
and the (unveri�ed) WEST tool sometimes produce trace regexes that di�er
only by a string of S 's at the end. In such cases, because these trace regexes
have di�erent length, our equivalence checking methods spuriously identify a
mismatch. The WEST tool always produces trace regexes that have the same
length as the computation length of the input formula, while WEST_reg does not.8

To account for this, we de�ne a function simp_pad_WEST_reg which pads trace
regexes to this computation length (and then simpli�es). We extend the top-level
correctness theorem from WEST_reg to simp_pad_WEST_reg ; in our experiments,
we work with simp_pad_WEST_reg so as to eliminate these spurious mismatches.

5 Experiments

The functions simp_pad_WEST_reg and naive_equivalence are executable in Is-
abelle/HOL, and we use Isabelle/HOL's code generator [20] to export these func-
tions to Haskell.9 We choose Haskell both to facilitate our experimental setup
and because the GHC compiler [33] produces reasonably fast native machine
code. We use our code export to validate two versions of the WEST tool�the
initial version of WEST [17], and also a more recent version that has been highly
optimized [51]. We also compare the di�erent implementations for speed. We run
all of our experiments in WSL2 on a Windows machine with an 11th generation
Intel Core i7 processor and 32GB of RAM. We use an unveri�ed parsing script to
transform input MLTL formulas into the format required by our code export.10

Previous Validation E�orts. The most recent (and fastest) version of WEST
was validated against several MLTL tools [51]: 1O the original version of WEST
[17], 2O the runtime veri�cation engine R2U2 [43,24,23] 3O a direct C++ im-
plementation of MLTL semantics [51], and 4O translating MLTL formulas to
propositional logic [21] and applying a BDD based AllSAT solver. The valida-
tion works by analyzing, for each formula in the test suite, whether the trace

8 This is because we implicitly treat shorter trace regexes to have all S 's at the end
(recall our discussion of the WEST_and_trace operator in Sect. 3.1).

9 Note that, although Isabelle/HOL's code generator is not yet fully veri�ed, exporting
a formalized function is more trustworthy than simply coding a function. Addition-
ally, some work has considered verifying Isabelle's code generator [22].

10 There has been some recent work [49] on improving support for veri�ed parsing in
Isabelle/HOL, so verifying this parsing step might be an interesting future direction.

Verifying MLTL to Regular Expressions 15

set of regexes produced by WEST is equivalent to the set of satisfying traces
produced by other tools. The equivalence checking is a crucial step performed
between outputs that can be in di�erent formats (depending on the output for-
mat of each tool). The test suite of 1662 MLTL formulas was designed to capture
every possible combination of MLTL operators [17].

5.1 Veri�ed Equivalence Checking

Our tool validation is set up to check the outputs of our veri�ed implementation
of WEST against the two existing implementations. For this, we need to be
able to check equivalences between WEST regexes. It is not always enough to
merely check set equality, as implementation di�erences can lead to di�erent
(but logically equivalent) outputs. For instance, the two WEST regexes [[[S, S]]]
and [[[S, 1]], [[1, S]], [[0, 0]]] are equivalent, but WEST_simp does not simplify the
second into the �rst. The order in which WEST_simp simpli�es pairs of trace
regexes within a WEST regex is what causes these di�erences.

Developing a fully veri�ed and optimized equivalence checking algorithm is
out of scope of our work, but we still wanted a lightweight trustworthy im-
plementation of regex equivalence checking. Accordingly, we formalize a naive
equivalence checking function for WEST regexes, called naive_equivalence. This
function works by explicitly enumerating all the trace regexes that each WEST
regex produces and then checking set equality.

We then prove the experimentally relevant direction of correctness: If two
WEST regexes are equivalent under our (executable) naive equivalence checking
function, then they are indeed equivalent under the (non-executable) mathemat-
ical de�nition. Formally, we have the following lemma:

lemma regex_equivalence_correct:

�xes A B::"WEST_regex"

shows "(naive_equivalence A B) −→ (∀π. match π A = match π B)"

The proof was approximately 1150 lines of code. Although establishing both di-
rections of equivalence here (i.e, ←→ instead of −→) is theoretically desirable,
the direction we verify is the experimentally signi�cant one, since we encounter
no instances where naive_equivalence failed in our test suite. More speci�cally,
naive_equivalence holds on all but 4 of the 1662 input formulas and times out
(after 4 hours) on the remaining 4 formulas. Often the outputs are identical; for
example, the Isabelle implementation and the optimized WEST tool produced
identical WEST regexes on 1547 of the formulas. We additionally ran the pre-
vious (unveri�ed) equivalence checking procedure, which succeeded on all of the
formulas. Collectively, these results establish strong con�dence in the correctness
of the (unveri�ed) WEST tools [17,51].

5.2 Speed Comparison

The original C++ version of WEST [17] performed string-based operations, and
the optimized version of WEST takes advantage of highly parallelized computa-

16 Wang et al.

tions by using bitsets [51]. Although fast performance is not our primary goal,
preliminary experiments demonstrate how our formalized code compares to the
two unveri�ed versions of WEST. Overall, we �nd that the optimized version of
WEST is fast (as expected). Our Isabelle implementation also performs quite

Fig. 4: Two cactus plots, each comparing the three WEST implementations on 1000
random formulas of varying nesting depth d, interval bounds b, and number of atomic
propositions n. The number of total solved instances is shown on the y-axis, and the
cumulative time taken is shown on the x-axis, with the number of timeouts labeled.

respectably; it is, in aggregate, close in performance to the optimized version
of WEST. We perform extensive experiments to compare the performance of
the three tools on large randomly generated benchmark sets. We use a script to
generate random MLTL formulas [51], varying the parameters of the maximum
depth and the maximum interval time bounds. Our results are in Fig. 4. As the
primary focus of our work is tool validation, we do not envision our contribution
as replacing the WEST tool, but its relative e�ciency is encouraging nonetheless.

However, we did �nd that, on individual examples, our code export has some-
what unpredictable behavior (whereas the optimized version of WEST appears
to be uniformly fast), and our code export seems to incur timeouts more fre-
quently than the unveri�ed WEST implementations. For example, in Fig. 5, we
evaluate the speed of the three tools based on varying values of d, the depth of
the formula, while �xing the number of atomic propositions at n = 5 and the
maximum interval bound at b = 2. Here, we observe that the Isabelle implemen-
tation begins to timeout much more frequently than the other two tools when
d = 4 and d = 5.

Additional results, including aggregate cactus plots on easier but larger test
suites, an extension of Fig. 5 on higher values of formula depth d, and experiments
where we vary the value of maximum interval bound b (instead of d), can be found
in Appendix A of the full version of this paper [53].

6 Conclusion

Our work produces a third, open-source, freely available implementation of the
WEST algorithm, this time formally veri�ed [52]. Given the popularity of MLTL
as a formal speci�cation language for safety-critical applications [24,15,31,16,5],

Verifying MLTL to Regular Expressions 17

Fig. 5: Results for n = 5, b = 2, and varying values of d from 0 to 5, with a batch size of
300 formulas per value of d. The Isabelle implementation is faster than the unoptimized
WEST tool on most values of d, but times out on many formulas for d = 5.

verifying signi�cant algorithms like WEST, which facilitates MLTL speci�cation,
is well-justi�ed. We build on an existing formalization of MLTL in Isabelle/HOL
[27] to further develop the library of veri�ed MLTL algorithms and properties,
which could help facilitate future veri�ed developments in this space. Our de-
velopment validates the existing (unveri�ed) WEST tool [17,51] on benchmarks
from the literature, bringing us a step closer to validating other MLTL tools
like R2U2 [40,23]. Though our primary focus was not on speed, the aggregate
performance of our Isabelle-generated code is promising, and optimizing our
formalization could be interesting future work. It would be particularly bene�-
cial to further optimize (and verify the reverse direction of) our naive WEST
regex equivalence checking, possibly using existing work [29] which veri�es regex
equivalence checking in a general setting. Veri�ed parsing (to transform input
formulas into the syntax required by our code export) would also be welcome.
Additionally, a deeper analysis of the performance of the WEST tools and of our
veri�ed code on di�erent classes of benchmarks could inform future veri�ed tool
generation e�orts. For example, it would be interesting to experimentally com-
pare a code export to some of the other languages supported by Isabelle/HOL,
like SML and OCaml, to see if a di�erent target language could help avoid time-
outs. Importantly, our formalization of MLTL rewriting, equivalence checking,
and regular expression manipulation could serve as a basis for formalizing similar
utilities in logics like MTL and STL that extend MLTL.

Acknowledgments. Thanks to NSF CAREER Award CNS-1552934, NSF CCRI-

2016592, and GRFP-2024364991 for supporting this work. We thank the anonymous

TACAS reviewers as well as Alec Rosentrater and Laura Gamboa Guzman for their

helpful feedback on the paper, and the TACAS artifact evaluators for their time.

References

1. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In:
LICS. pp. 390�401. IEEE (1990)

18 Wang et al.

2. Alur, R., Feder, T., Henzinger, T.A.: The Bene�ts of Relaxing Punctuality. In:
Logrippo, L. (ed.) Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, Montreal, Quebec, Canada, August 19-21, 1991. pp.
139�152. ACM (1991). https://doi.org/10.1145/112600.112613, https://doi.
org/10.1145/112600.112613

3. Amjad, R., van Glabbeek, R., O'Connor, L.: De�nitive set semantics for LTL3.
Archive of Formal Proofs (August 2024), https://isa-afp.org/entries/LTL3_
Semantics.html, Formal proof development

4. Anastasia Mavridou: Capturing and Analyzing Requirements with FRET. Pre-
sentation, nasa formal methods symposium, https://github.com/NASA-SW-VnV/
fret, National Aeronautics and Space Agency, Pasadena, California, USA (May
2022)

5. Aurandt, A., Jones, P., Rozier, K.Y.: Runtime Veri�cation Triggers Real-time,
Autonomous Fault Recovery on the CySat-I. In: Proceedings of the 14th NASA
Formal Methods Symposium (NFM 2022). Lecture Notes in Computer Science
(LNCS), vol. 13260. Springer, Cham, Caltech, California, USA (May 2022). https:
//doi.org/10.1007/978-3-031-06773-0_45

6. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S.,
Coppo, M., Damiani, F. (eds.) TYPES. LNCS, vol. 3085, pp. 34�50. Springer
(2003). https://doi.org/10.1007/978-3-540-24849-1_3, https://doi.org/10.
1007/978-3-540-24849-1_3

7. Ballarin, C.: Locales: A module system for mathematical theories. J. Autom.
Reason. 52(2), 123�153 (2014). https://doi.org/10.1007/S10817-013-9284-7,
https://doi.org/10.1007/s10817-013-9284-7

8. Basin, D.A., Dardinier, T., Hauser, N., Heimes, L., y Munive, J.J.H., Kaletsch,
N., Krstic, S., Marsicano, E., Raszyk, M., Schneider, J., Tirore, D.L., Tray-
tel, D., Zingg, S.: VeriMon: A formally veri�ed monitoring tool. In: Seidl, H.,
Liu, Z., Pasareanu, C.S. (eds.) ICTAC. LNCS, vol. 13572, pp. 1�6. Springer
(2022). https://doi.org/10.1007/978-3-031-17715-6_1, https://doi.org/10.
1007/978-3-031-17715-6_1

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In:
Biere, A., Bloem, R. (eds.) CAV. LNCS, vol. 8559, pp. 334�342. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_22, https://doi.org/10.1007/
978-3-319-08867-9_22

10. Chattopadhyay, A., Mamouras, K.: A Veri�ed Online Monitor for Metric Temporal
Logic with Quantitative Semantics. In: Runtime Veri�cation: 20th International
Conference, RV 2020, Los Angeles, CA, USA, October 6�9, 2020, Proceedings. p.
383�403. Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-60508-7_21, https://doi.org/10.1007/978-3-030-60508-7_21

11. Chattopadhyay, A., Mamouras, K.: A veri�ed online monitor for metric temporal
logic with quantitative semantics. In: Deshmukh, J., Ni£kovi¢, D. (eds.) Runtime
Veri�cation. pp. 383�403. Springer International Publishing, Cham (2020)

12. Conrad, E., Titolo, L., Giannakopoulou, D., Pressburger, T., Dutle, A.: A compo-
sitional proof framework for FRETish requirements. In: Popescu, A., Zdancewic,
S. (eds.) CPP '22: 11th ACM SIGPLAN International Conference on Certi-
�ed Programs and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022. pp.
68�81. ACM (2022). https://doi.org/10.1145/3497775.3503685, https://doi.
org/10.1145/3497775.3503685

https://doi.org/10.1145/112600.112613
https://doi.org/10.1145/112600.112613
https://doi.org/10.1145/112600.112613
https://doi.org/10.1145/112600.112613
https://isa-afp.org/entries/LTL3_Semantics.html
https://isa-afp.org/entries/LTL3_Semantics.html
https://github.com/NASA-SW-VnV/fret
https://github.com/NASA-SW-VnV/fret
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-031-06773-0_45
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/S10817-013-9284-7
https://doi.org/10.1007/S10817-013-9284-7
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685
https://doi.org/10.1145/3497775.3503685

Verifying MLTL to Regular Expressions 19

13. Coquand, T., Siles, V.: A Decision Procedure for Regular Expression Equivalence
in Type Theory. In: Jouannaud, J., Shao, Z. (eds.) CPP. LNCS, vol. 7086, pp. 119�
134. Springer (2011). https://doi.org/10.1007/978-3-642-25379-9_11, https:
//doi.org/10.1007/978-3-642-25379-9_11

14. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of
inductive constructions. J. Log. Comput. 13(6), 801�813 (2003). https://doi.
org/10.1093/LOGCOM/13.6.801, https://doi.org/10.1093/logcom/13.6.801

15. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a veri�cation view for an au-
tonomous real-time system architecture. In: Proceedings of SciTech Forum. p. On-
line. 2021-0566, AIAA (January 2021). https://doi.org/https://doi.org/10.
2514/6.2021-0566

16. Dabney, J.B., Rajagopal, P., Badger, J.M.: Using assume-guarantee contracts
for developmental veri�cation of autonomous spacecraft. Flight Software Work-
shop (FSW) Online: https://www.youtube.com/watch?v=HFnn6TzblPg (February
2022)

17. Elwing, J., Gamboa-Guzman, L., Sorkin, J., Travesset, C., Wang, Z., Rozier, K.Y.:
Mission-time LTL (MLTL) formula validation via regular expressions. In: Her-
ber, P., Wijs, A. (eds.) iFM. LNCS, vol. 14300, pp. 279�301. Springer (2023).
https://doi.org/10.1007/978-3-031-47705-8_15, https://doi.org/10.1007/
978-3-031-47705-8_15

18. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A
fully veri�ed executable LTL model checker. Archive of Formal Proofs (May 2014),
https://isa-afp.org/entries/CAVA_LTL_Modelchecker.html, Formal proof de-
velopment

19. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Working Con-
ference on Requirements Engineering: Foundation for Software Quality (REFSQ-
2020). No. ARC-E-DAA-TN77785 (2020)

20. Haftmann, F.: Code generation from speci�cations in higher-order logic. Ph.D.
thesis, Technical University Munich (2009), http://mediatum2.ub.tum.de/node?
id=886023

21. Hariharan, G., Jones, P.H., Rozier, K.Y., Wongpiromsarn, T.: Maximum satis�a-
bility of Mission-time Linear Temporal Logic. In: Petrucci, L., Sproston, J. (eds.)
FORMATS. LNCS, vol. 14138, pp. 86�104. Springer (2023). https://doi.org/10.
1007/978-3-031-42626-1_6, https://doi.org/10.1007/978-3-031-42626-1_6

22. Hupel, L., Nipkow, T.: A Veri�ed Compiler from Isabelle/HOL to CakeML.
In: Ahmed, A. (ed.) ESOP. LNCS, vol. 10801, pp. 999�1026. Springer (2018).
https://doi.org/10.1007/978-3-319-89884-1_35, https://doi.org/10.1007/
978-3-319-89884-1_35

23. Johannsen, C., Jones, P., Kempa, B., Rozier, K.Y., Zhang, P.: R2U2 Version 3.0:
Re-Imagining a Toolchain for Speci�cation, Resource Estimation, and Optimized
Observer Generation for Runtime Veri�cation in Hardware and Software. In: Enea,
C., Lal, A. (eds.) Computer Aided Veri�cation. pp. 483�497. Springer Nature
Switzerland, Cham (2023)

24. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding Online
Runtime Veri�cation for Fault Disambiguation on Robonaut2. In: FORMATS. pp.
196�214. LNCS, Springer, Vienna, Austria (September 2020), http://research.
temporallogic.org/papers/KZJZR20.pdf

25. Kessler, F.B.: nuXmv 1.1.0 (2016-05-10) Release Notes. https://es-static.fbk.
eu/tools/nuxmv/downloads/NEWS.txt (2016)

https://doi.org/10.1007/978-3-642-25379-9_11
https://doi.org/10.1007/978-3-642-25379-9_11
https://doi.org/10.1007/978-3-642-25379-9_11
https://doi.org/10.1007/978-3-642-25379-9_11
https://doi.org/10.1093/LOGCOM/13.6.801
https://doi.org/10.1093/LOGCOM/13.6.801
https://doi.org/10.1093/LOGCOM/13.6.801
https://doi.org/10.1093/LOGCOM/13.6.801
https://doi.org/10.1093/logcom/13.6.801
https://doi.org/https://doi.org/10.2514/6.2021-0566
https://doi.org/https://doi.org/10.2514/6.2021-0566
https://doi.org/https://doi.org/10.2514/6.2021-0566
https://doi.org/https://doi.org/10.2514/6.2021-0566
https://www.youtube.com/watch?v=HFnn6TzblPg
https://doi.org/10.1007/978-3-031-47705-8_15
https://doi.org/10.1007/978-3-031-47705-8_15
https://doi.org/10.1007/978-3-031-47705-8_15
https://doi.org/10.1007/978-3-031-47705-8_15
https://isa-afp.org/entries/CAVA_LTL_Modelchecker.html
http://mediatum2.ub.tum.de/node?id=886023
http://mediatum2.ub.tum.de/node?id=886023
https://doi.org/10.1007/978-3-031-42626-1_6
https://doi.org/10.1007/978-3-031-42626-1_6
https://doi.org/10.1007/978-3-031-42626-1_6
https://doi.org/10.1007/978-3-031-42626-1_6
https://doi.org/10.1007/978-3-031-42626-1_6
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-89884-1_35
http://research.temporallogic.org/papers/KZJZR20.pdf
http://research.temporallogic.org/papers/KZJZR20.pdf
https://es-static.fbk.eu/tools/nuxmv/downloads/NEWS.txt
https://es-static.fbk.eu/tools/nuxmv/downloads/NEWS.txt

20 Wang et al.

26. Kosaian, K., Wang, Z., Sloan, E.: Mission-time linear temporal logic. Archive
of Formal Proofs (January 2025), https://isa-afp.org/entries/Mission_Time_
LTL.html, Formal proof development

27. Kosaian, K., Wang, Z., Sloan, E., Rozier, K.: Formalizing MLTL formula progres-
sion in Isabelle/HOL (2024), https://arxiv.org/abs/2410.03465

28. Krauss, A.: Automating Recursive De�nitions and Termination Proofs in Higher-
Order Logic. Ph.D. thesis, Technische Universität München (2009)

29. Krauss, A., Nipkow, T.: Proof Pearl: Regular Expression Equivalence and Relation
Algebra. J. Autom. Reason. 49(1), 95�106 (2012). https://doi.org/10.1007/

S10817-011-9223-4, https://doi.org/10.1007/s10817-011-9223-4
30. Li, J., Vardi, M.Y., Rozier, K.Y.: Satis�ability Checking for Mission-Time LTL.

In: Proceedings of 31st International Conference on Computer Aided Veri�cation
(CAV 2019). LNCS, Springer, New York, NY, USA (July 2019)

31. Luppen, Z., Jacks, M., Baughman, N., Hertz, B., Cutler, J., Lee, D.Y., Rozier, K.Y.:
Elucidation and Analysis of Speci�cation Patterns in Aerospace System Teleme-
try. In: Proceedings of the 14th NASA Formal Methods Symposium (NFM 2022).
Lecture Notes in Computer Science (LNCS), vol. 13260. Springer, Cham, Caltech,
California, USA (May 2022). https://doi.org/10.1007/978-3-031-06773-0_28

32. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152�166. Springer (2004)

33. Marlow, S., Jones, S.L.P.: The Glasgow Haskell Compiler (2012), https://api.
semanticscholar.org/CorpusID:35370

34. NASA Technology Transfer Program: FRET : Formal Requirements Elic-
itation Tool (ARC-18066-1). Online: https://software.nasa.gov/software/

ARC-18066-1 (2024)
35. Perez, I.: Runtime veri�cation with ogma. In: Invited Talk to University of Cali-

fornia (2023)
36. Perez, I., Goodloe, A.: OGMA. https://github.com/nasa/ogma (2021)
37. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Auto-

mated translation of natural language requirements to runtime monitors. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 387�395. Springer International Publishing, Cham (2022)

38. Pnueli, A., Arons, T.: TLPVS: A PVS-based LTL veri�cation system. In: Der-
showitz, N. (ed.) Veri�cation: Theory and Practice, Essays Dedicated to Zo-
har Manna on the Occasion of His 64th Birthday. LNCS, vol. 2772, pp. 598�
625. Springer (2003). https://doi.org/10.1007/978-3-540-39910-0_26, https:
//doi.org/10.1007/978-3-540-39910-0_26

39. Raszyk, M., Basin, D., Traytel, D.: Multi-head monitoring of metric dynamic logic.
In: International Symposium on Automated Technology for Veri�cation and Anal-
ysis. pp. 233�250. Springer (2020)

40. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Proceedings
of the 20th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Lecture Notes in Computer Science (LNCS),
vol. 8413, pp. 357�372. Springer-Verlag (April 2014)

41. Roohi, N., Viswanathan, M.: Revisiting MITL to �x decision procedures. In: Dillig,
I., Palsberg, J. (eds.) VMCAI. LNCS, vol. 10747, pp. 474�494. Springer (2018).
https://doi.org/10.1007/978-3-319-73721-8_22, https://doi.org/10.1007/
978-3-319-73721-8_22

https://isa-afp.org/entries/Mission_Time_LTL.html
https://isa-afp.org/entries/Mission_Time_LTL.html
https://arxiv.org/abs/2410.03465
https://doi.org/10.1007/S10817-011-9223-4
https://doi.org/10.1007/S10817-011-9223-4
https://doi.org/10.1007/S10817-011-9223-4
https://doi.org/10.1007/S10817-011-9223-4
https://doi.org/10.1007/s10817-011-9223-4
https://doi.org/10.1007/978-3-031-06773-0_28
https://doi.org/10.1007/978-3-031-06773-0_28
https://api.semanticscholar.org/CorpusID:35370
https://api.semanticscholar.org/CorpusID:35370
https://software.nasa.gov/software/ARC-18066-1
https://software.nasa.gov/software/ARC-18066-1
https://github.com/nasa/ogma
https://doi.org/10.1007/978-3-540-39910-0_26
https://doi.org/10.1007/978-3-540-39910-0_26
https://doi.org/10.1007/978-3-540-39910-0_26
https://doi.org/10.1007/978-3-540-39910-0_26
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-319-73721-8_22

Verifying MLTL to Regular Expressions 21

42. Rozier, K.Y.: Speci�cation: The biggest bottleneck in formal methods and au-
tonomy. In: Proceedings of 8th Working Conference on Veri�ed Software: The-
ories, Tools, and Experiments (VSTTE 2016). LNCS, vol. 9971, pp. 1�19.
Springer-Verlag, Toronto, ON, Canada (July 2016). https://doi.org/10.1007/
978-3-319-48869-1_2

43. Rozier, K.Y., Schumann, J.: R2U2: Tool Overview. In: Proceedings of Interna-
tional Workshop on Competitions, Usability, Benchmarks, Evaluation, and Stan-
dardisation for Runtime Veri�cation Tools (RV-CUBES). vol. 3, pp. 138�156.
Kalpa Publications, Seattle, WA, USA (September 2017), https://easychair.
org/publications/paper/Vncw

44. Schimpf, A., Lammich, P.: Converting linear-time temporal logic to generalized
Büchi automata. Archive of Formal Proofs (May 2014), https://isa-afp.org/
entries/LTL_to_GBA.html, Formal proof development

45. Seidl, B., Sickert, S.: A compositional and uni�ed translation of LTL into ω-
automata. Archive of Formal Proofs (April 2019), https://isa-afp.org/entries/
LTL_Master_Theorem.html, Formal proof development

46. Sickert, S.: Converting linear temporal logic to deterministic (generalized) Rabin
automata. Archive of Formal Proofs (September 2015), https://isa-afp.org/
entries/LTL_to_DRA.html, Formal proof development

47. Sickert, S.: Linear temporal logic. Archive of Formal Proofs (March 2016), https:
//isa-afp.org/entries/LTL.html, Formal proof development

48. Sickert, S.: An e�cient normalisation procedure for linear temporal logic: Is-
abelle/HOL formalisation. Archive of Formal Proofs (May 2020), https://

isa-afp.org/entries/LTL_Normal_Form.html, Formal proof development
49. Tilscher, S., Wimmer, S.: LL(1) parser generator. Archive of Formal Proofs (May

2024), https://isa-afp.org/entries/LL1_Parser.html, formal proof develop-
ment

50. Titolo, L., Conrad, E., Giannakopoulou, D., Pressburger, T., Dutle,
A.: FRET Proof Framework. https://lauratitolo.github.io/project/

fret-proof-framework/ (2022)
51. Wang, Z., Gamboa-Guzman, L.P., Rozier, K.Y.: WEST: Interactive Validation

of Mission-time Linear Temporal Logic (MLTL) (2024), https://temporallogic.
org/research/WEST/

52. Wang, Z., Kosaian, K.: Mission-time linear temporal logic to regular expres-
sions. Archive of Formal Proofs (January 2025), https://isa-afp.org/entries/
Mission_Time_LTL_to_Regular_Expression.html, Formal proof development

53. Wang, Z., Kosaian, K., Rozier, K.Y.: Formally verifying a transformation from
MLTL formulas to regular expressions (2025), https://arxiv.org/abs/2501.

17444

54. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions (proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) Interactive Theorem Proving. pp. 341�356. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

55. Zhang, P., Aurandt, A.A., Dureja, R., Jones, P.H., Rozier, K.Y.: Model predic-
tive runtime veri�cation for cyber-physical systems with real-time deadlines. In:
Petrucci, L., Sproston, J. (eds.) Formal Modeling and Analysis of Timed Systems
- 21st International Conference, FORMATS 2023, Antwerp, Belgium, September
19-21, 2023, Proceedings. Lecture Notes in Computer Science, vol. 14138, pp. 158�
180. Springer (2023). https://doi.org/10.1007/978-3-031-42626-1_10, https:
//doi.org/10.1007/978-3-031-42626-1_10

https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://easychair.org/publications/paper/Vncw
https://easychair.org/publications/paper/Vncw
https://isa-afp.org/entries/LTL_to_GBA.html
https://isa-afp.org/entries/LTL_to_GBA.html
https://isa-afp.org/entries/LTL_Master_Theorem.html
https://isa-afp.org/entries/LTL_Master_Theorem.html
https://isa-afp.org/entries/LTL_to_DRA.html
https://isa-afp.org/entries/LTL_to_DRA.html
https://isa-afp.org/entries/LTL.html
https://isa-afp.org/entries/LTL.html
https://isa-afp.org/entries/LTL_Normal_Form.html
https://isa-afp.org/entries/LTL_Normal_Form.html
https://isa-afp.org/entries/LL1_Parser.html
https://lauratitolo.github.io/project/fret-proof-framework/
https://lauratitolo.github.io/project/fret-proof-framework/
https://temporallogic.org/research/WEST/
https://temporallogic.org/research/WEST/
https://isa-afp.org/entries/Mission_Time_LTL_to_Regular_Expression.html
https://isa-afp.org/entries/Mission_Time_LTL_to_Regular_Expression.html
https://arxiv.org/abs/2501.17444
https://arxiv.org/abs/2501.17444
https://doi.org/10.1007/978-3-031-42626-1_10
https://doi.org/10.1007/978-3-031-42626-1_10
https://doi.org/10.1007/978-3-031-42626-1_10
https://doi.org/10.1007/978-3-031-42626-1_10

22 Wang et al.

56. Zhuchko, E., Veanes, M., Ebner, G.: Lean formalization of extended regular ex-
pression matching with lookarounds. In: Proceedings of the 13th ACM SIGPLAN
International Conference on Certi�ed Programs and Proofs. p. 118�131. CPP 2024,
Association for Computing Machinery, New York, NY, USA (2024). https://doi.
org/10.1145/3636501.3636959, https://doi.org/10.1145/3636501.3636959

https://doi.org/10.1145/3636501.3636959
https://doi.org/10.1145/3636501.3636959
https://doi.org/10.1145/3636501.3636959
https://doi.org/10.1145/3636501.3636959
https://doi.org/10.1145/3636501.3636959

	Formally Verifying a Transformation from MLTL Formulas to Regular Expressions

