
Model Predictive Runtime Verification
for Cyber-Physical Systems with Real-Time Deadlines ⋆

Pei Zhang1[0000−0001−9560−2175],
Alexis Aurandt2[0000−0003−2008−673X], Rohit Dureja⋆⋆3[0000−0002−7152−8115],

Phillip H. Jones2[0000−0002−8220−7552], and Kristin Yvonne Rozier2[0000−0002−6718−2828]

1 Google LLC, USA piz@google.com
2 Iowa State University, USA {aurandt, phjones, kyrozier}@iastate.edu

3 IBM Corporation, USA
Abstract. Cyber-physical systems often require fault detection of future events in
order to mitigate the fault before failure occurs. Effective on-board runtime verification
(RV) will need to not only determine the system’s current state but also predict future
faults by predetermined mitigation trigger deadlines. For example, if it takes three sec-
onds to deploy the parachute of an Unmanned Aerial System (UAS), the deployment
of the parachute must be triggered three seconds before it is needed to mitigate the
impending crash. To allow for the detection of future faults by deadlines, we design a
real-time Model Predictive Runtime Verification (MPRV) algorithm that uniquely uses
current data traces whenever possible, predicting only the minimum horizon needed
to make an on-deadline evaluation. Although MPRV is extensible to other RV engines,
we deploy the algorithm on the R2U2 RV engine due to R2U2’s resource-aware ar-
chitecture, real-time guarantees, and deployment history. We demonstrate the utility of
the MPRV algorithm through a quadcopter case study and evaluate the effectiveness of
our implementation by conducting memory usage and runtime performance analysis
in a resource-constrained FPGA environment.

1 Introduction
Modern cyber-physical systems such as Unmanned Aerial Systems (UAS), autonomous
driving systems, and human-interactive robots require runtime verification (RV) to ensure that
they uphold design requirements and react to unanticipated events during deployment [11].
On-board RV can detect violations of system requirements and trigger appropriate mitigation
actions. For RV to be effective, some element of prediction is often required; waiting until
sensor data confirms a fault occurred can limit mitigation options.

Predictive RV was first introduced in [36, 63], but these works focus only on the prediction
of untimed properties. In [47], the idea of synthesizing online monitors to predict timed
properties is introduced. However, the system model must be known and represented as a
deterministic timed automaton, which is not compositional, resource-aware, or executable in
real-time or in hardware. As a result, this approach is not scalable or applicable to many system
models or applications. We introduce Model Predictive Runtime Verification (MPRV), which
monitors timed properties but allows for integration with any user-defined model predictor.

In more recent work, several apply knowledge of the system to produce a model predictor
[19, 23, 60, 61], while others address generating a model predictor when a model is not known
a priori (i.e., black-box systems) or when a system is subject to perturbations [6–8, 24]. Oth-
ers also take into consideration the uncertainty of the model predictor when considering the
⋆ Supported by NSF:CPS Award 2038903. Artifacts at https://zenodo.org/record/8076503.

⋆⋆ Work performed as a graduate student at Iowa State University

2 P. Zhang et al.

supervisory controller’s actions [38, 57, 60]. To the best of our knowledge, these tools are all re-
stricted to software implementations and have not been deployed on resource-constrained, real-
time systems. We prove resource and time constraints for the MPRV algorithm that demon-
strate its adaptability to RV in resource-constrained environments with real-time requirements.

Cyber-physical systems often deploy with a small, finite set of possible mitigation actions
should a fault occur, and each action typically has a known deployment time. For example,
a UAS may have a parachute that takes three seconds to unfurl, but the parachute must be
fully unfurled within two seconds after motor failure to be effective. If the parachute does
not unfurl in time, an unsafe crash will occur. We can define a mitigation trigger deadline
d as the deadline by which a mitigation decision needs to be determined. In this case, d is one
second before motor failure occurs (i.e., d=−1). Note that d can change with the property
being monitored or during the mission. With our example, the same mission property may
require evaluation with an earlier d when the UAS is flying at low altitudes, but then with
no d at all when the UAS is flying so low to the ground that a parachute would not be useful.
We may monitor with a later d when the UAS is flying at a high altitude; in this case, there
may even be time to rigorously confirm the motor failure without any predicted data.

MPRV answers the following question: by a given mitigation trigger deadline d, what
is the two-valued verdict (true or false) of a given timed property φ based on maximum real
data? No other tool or algorithm answers this question in an implementation independent,
real-time, online setting, much less in a resource-aware, on-board embeddable fashion, such
as on an FPGA. Additionally, the deadline d may vary across different properties or in one
property across different operational modes (e.g., UAS flying at low altitudes versus high
altitudes); therefore, a modular, generalizable algorithm is required. Effective mitigation
triggering depends upon making the most accurate decision by the deadline d. In most cases,
real data is more accurate than predicted data (assuming the RV engine is also monitoring for
sensor malfunctions); therefore, MPRV uniquely uses real data up to time d with the minimal
necessary predicted data to make a decision by d.

As the NASA Lunar Gateway team’s 2021 survey confirms [20], only two RV engines run
in real-time on embedded platforms, R2U2 [48, 50] and LOLA [3, 21], but neither of them pro-
vides prediction. Many RV designers have recognized the need for hardware implementations
suitable for real-time embedded systems [30, 32, 34, 39, 43, 46, 55, 56, 58]; however, R2U2 is
the only one that has a currently-maintained implementation, evaluates both true and false ver-
dicts (versus only property failure) over a future-time logic without evaluation delay, and mon-
itors formulas (versus analysis requiring software instrumentation). R2U2 also has a history of
being deployed on several mission-critical, resource-constrained, flight-certified systems [5, 17,
31, 34]. We exemplify the R2U2 extension and leave the LOLA extension to future work. We
choose Mission-time Linear Temporal Logic (MLTL) for property specification as it intuitively
captures our quadcopter case study’s requirements, is a timed logic, and R2U2 encodes it na-
tively. We also introduce a new MLTL semantics that incorporates deadlines to accurately rep-
resent our MPRV specifications. However, MPRV is extensible to other logics and RV engines.

Our contributions include (1) MLTL semantics with deadline (Definition 10), (2) a formal
definition of MPRV (Definition 13), (3) a generic algorithm for MPRV and proof of its
correctness (Algorithm 1 and Theorem 1), (4) a specialized algorithm for implementing
MPRV utilizing the R2U2 framework (Algorithm 2) and analysis of its worst-case execution
time and memory usage (Section 3.3), (5) application in a quadcopter case study (Section 4),

Model Predictive Runtime Verification for Cyber-Physical Systems 3

and (6) memory usage and runtime performance analysis of MPRV in a resource-constrained
FPGA environment (Section 5).

2 Preliminaries
2.1 Mission-Time Linear Temporal Logic (MLTL) [37, 48]
Definition 1. (MLTL Syntax) The syntax of an MLTL formula φ over a set of atomic
propositionsAP is recursively defined as:

φ ::=true | false | p | ¬φ | φ1∧φ2 | φ1∨φ2 |□Iφ |3Iφ | φ1 UI φ2 | φ1 RI φ2

where p∈AP is an atom and φ1, φ2 are MLTL formulas. I is a closed interval [lb,ub] where
lb≤ub and lb,ub∈N0, or simply [ub] if lb=0.

Definition 2. (MLTL Semantics) The semantics of an MLTL formula over atomic proposi-
tionsAP is interpreted over a bounded finite trace π. Every position π(i) (where i≥0) is an
assignment over ∈2AP . |π| denotes the length of π (where |π|<∞), and π[m,n] denotes
the trace segment π(m),π(m+1),...,π(n). Given two MLTL formulas φ1 and φ2, φ1≡φ2

denotes that they are semantically equivalent. MLTL keeps the standard operator equivalences
from LTL, including false≡¬true, φ1∨φ2≡¬(¬φ1∧¬φ2), ¬(φ1UIφ2)≡(¬φ1RI¬φ2),
¬3Iφ≡□I¬φ, 3Iφ≡(true UIφ), and (□Iφ)≡(falseRIφ). (Notably, MLTL discards the
next (X) operator, which is essential in LTL, since Xφ is semantically equivalent to 2[1,1]φ
[37]). We recursively define π,i |= φ (trace π starting from time index i≥ 0 satisfies, or
“models” MLTL formula φ) as
• π,i |=true,
• π,i |=p for p∈AP iff p∈π(i),
• π,i |=¬φ iff π,i |̸=φ,
• π,i |=φ1∧φ2 iff π,i |=φ1 and π,i |=φ2,
• π,i |=φ1 U[lb,ub] φ2 iff |π|≥ i+lb and ∃j ∈ [i+lb,i+ub] such that π,j |=φ2 and for

every k<j and k∈ [i+lb,i+ub] we have π,k |=φ1

Definition 3. (MLTL Satisfiability [37]) Given an MLTL formulaφ, the satisfiability problem
asks whether there exists a finite trace π starting at time index i, such that π,i |=φ.

Propagation Delay. To evaluate the satisfiability of a future-time MLTL formula φ at time
index i in a trace π, the RV engine may need to know the evaluation of atomic propositions
at future time stamps, e.g., if a ∈ AP is false at time 0 in π, then we can evaluate that
π,0 |̸=2[0,5]a at time 0. However, if a is always true in π, we cannot make the assertion that
π,0 |=2[0,5]a until time 5. In this example, the best-case propagation delay of φ is 0, and the
worst-case propagation delay is 5.

Definition 4. (Propagation Delay) Given an MLTL formula φ and trace π starting from time
index i≥0, let k be the time stamp when the satisfiability of π,i |=φ is determinable. The
propagation delay of formula φ, denoted φ.pd is the number of time stamps between i and k,
i.e., φ.pd=k−i.

Definition 5. (Best-case Propagation Delay) The best-case propagation delay of an MLTL
formula φ, denoted φ.bpd, is the minimum propagation delay required to determine the
satisfiability of π,i |=φ, i.e., φ.bpd=min(φ.pd).

Definition 6. (Worst-case Propagation Delay) The worst-case propagation delay of an MLTL
formula φ, denoted φ.wpd, is the maximum propagation delay required to determine the
satisfiability of π,i |=φ, i.e., φ.wpd=max(φ.pd).

4 P. Zhang et al.

Definition 7. (Propagation Delay Semantics) The best- and worst-case propagation delay for
an MLTL formula φ is structurally defined as follows:

• φ∈AP :

{
φ.wpd=0

φ.bpd=0
• φ=¬ψ :

{
φ.wpd=ψ.wpd

φ.bpd=ψ.bpd

• φ=2[lb,ub]ψ or φ=3[lb,ub]ψ :

{
φ.wpd=ψ.wpd+ub

φ.bpd=ψ.bpd+lb

• φ=φ1∨φ2 or φ=φ1∧φ2 :

{
φ.wpd=max(φ1.wpd,φ2.wpd)

φ.bpd=min(φ1.bpd,φ2.bpd)

• φ=φ1U[lb,ub]φ2 or φ=φ1R[lb,ub]φ2 :

{
φ.wpd=max(φ1.wpd,φ2.wpd)+ub

φ.bpd=min(φ1.bpd,φ2.bpd)+lb

where AP is the set of atomic propositions and lb and ub stand for the lower and upper
bounds of an interval, respectively.

2.2 Abstract Syntax Tree
R2U2 [34, 48, 50, 51] decomposes the formula φ into subformulas using a parse tree. It
computes the satisfaction of every subformula from the bottom up and propagates the ver-
ification results to the root-level formula φ. R2U2 uses optimized automatic code generation
to synthesize asynchronous (event-triggered) observers that output execution sequences over
finite time stamps.
Definition 8. (Execution Sequence for Asynchronous Observers [48]) An execution sequence
for an MLTL formula φ, denoted ⟨Tφ⟩, over trace π is a sequence of tuples Tφ=(v,τ), where
τ∈N0 is a time index and v∈{true,false} is a verdict.

We use an integer superscript to access a particular tuple in ⟨Tφ⟩, e.g., T0
φ is the first tuple in

⟨Tφ⟩. Elements in Tφ are referenced as Tφ.τ and Tφ.v. We say Tφ holds if Tφ.v is true, and
Tφ does not hold if Tφ.v is false. For a given execution sequence ⟨Tφ⟩=T0

φ,T
1
φ,T

2
φ,T

3
φ,...,

the tuple accessed by Tn
φ corresponds to a section of satisfaction of φ such that Tn

φ .v is
true if and only if ∀i ∈ [Tn−1

φ .τ +1,Tn
φ .τ], we have π,i |= φ. Similarly, Tn

φ .v is false if
there ∃i∈ [Tn−1

φ .τ+1,Tn
φ .τ] such that π,i |̸=φ. We say an execution sequence tuple Tφ is

produced by the observer for φ when Tφ.τ≥i and Tφ.v∈{true,false} according to π,i |=φ.

𝐴𝑃: 𝑎0

𝐴𝑃: 𝑎1

𝜑!
𝜑" 𝜑#

𝜑$
☐[𝟐]

∧

𝐴𝑃

𝐴𝑃

Fig. 1. AST for φ=(□[0,2]a0)∧a1

Abstract syntax tree construction. A compiler parses the
user-specified MLTL formula into an Abstract Syntax
Tree (AST) of subformulas, where each node in the AST
handles one MLTL operator. Every node explicitly exposes
the logical connection between the subformulas. R2U2
automatically synthesizes a runtime observer for every
non-leaf node in the tree (i.e., for every MLTL operator)
that takes an input execution sequence from child nodes
and produces an output execution sequence for the parent
node. R2U2 determines the satisfaction of the MLTL formula on an input trace by evaluating
the output of the observers from the leaf nodes to the root of the tree. Fig. 1 shows the
AST for MLTL formula φ=(□[0,2]a0)∧a1, and Fig. 2 shows the corresponding compiled
instructions. The leaf nodes are atomic proposition load operators that output an execution
sequence that combines the values of the atomic propositions in the trace π with time index

Model Predictive Runtime Verification for Cyber-Physical Systems 5

τ . The output sequence of the root node corresponds to the verification result of the MLTL
specification φ at every time stamp.

Line0: φ0←load(a0)

Line1: φ1←load(a1)

Line2: φ2←2[0,2](φ0)

Line3: φ3←∧(φ1,φ2)

Fig. 2. Instructions compiled from AST

Abstract syntax tree evaluation. Let tR be the current
time stamp during runtime. Note that tR=0 indicates
the start of execution. Table 1 shows the execution
sequences generated by the observers when evaluat-
ing the MLTL formula φ=(2[0,2]a0)∧a1 over the
assignments shown in Fig. 3. The atomic proposition
load operators capture hardware signals at the begin-
ning of each time stamp (shown as event edges in
Fig. 3) and output the corresponding execution sequence tuple. For example, at time stamp
tR =3, a1= false and Tφ1

= (false,3). The verdicts in an execution sequence provide an
evaluation of a future-time MLTL formula for every time stamp, sometimes by aggregating
multiple consecutive verdicts from an input execution sequence. For example, at time stamp
tR=2, ⟨Tφ0⟩=⟨(true,0),(true,1),(true,2)⟩ and ⟨Tφ2⟩=⟨(true,0)⟩; in other words, whether
φ2 holds at time index τ=0 cannot be known until tR=2. In this example, the trace π does
not always satisfy φ; note that the tuple (false,3) in Tφ (indicating that φ is false from time 2
to time 3) is produced at time stamp tR=3.

MLTL
tR 0 1 2 3 4

Tφ0(φ0=load(a0)) (⊤, 0) (⊤, 1) (⊤, 2) (⊤, 3) (⊤, 4)
Tφ1(φ1=load(a1)) (⊤, 0) (⊤, 1) (⊥, 2) (⊥, 3) (⊤, 4)
Tφ2(φ2=2[0,2]φ0) - - (⊤, 0) (⊤, 1) (⊤, 2)
Tφ (φ=φ1∧φ2) - - (⊤, 0) (⊤, 1)(⊥, 3) -

Table 1. Output of observers as an execution sequence (⊤≡
true and⊥≡false) at time stamps tR.

0 1 2 3 4 5

event

a0

a1

Fig. 3. Assignment to propositions a0
and a1 at event edges.

3 Model Predictive Runtime Verification (MPRV)

System

Sensors

𝐴𝑃!, …, 𝐴𝑃" 𝐴𝑃!, …, 𝐴𝑃"

Predictor

Future Time Monitor

Supervisory Controller

Augmented RV Engine

Actuator

Fig. 4. High-level overview of MPRV. The blue and
yellow arrows represent real and predicted data val-
ues, respectively.

Overview. A high-level overview of MRPV
is shown in Fig. 4. The future-time monitor
utilizes current sensor data and model pre-
dictions to evaluate the satisfiability of for-
mulaφ by deadline d. The prediction’s accu-
racy depends on the type of predictor and its
modeling inaccuracies. We design MPRV
generically; the user may choose any model
predictor, weighing the trade-offs between
accuracy and timing for the system-under-
verification. The goal of MPRV is to make a decision on π,i |=φ such that the supervisory
controller can take the appropriate mitigation action by deadline d.

Definition 9. (Deadline) Given an MLTL formula φ and trace π starting from time index
i≥ 0, the deadline d∈Z is the number of time steps measured relative to i by which the
satisfiability result of π,i |=φ must be evaluated such that 0≤i+d≤M , where M denotes
the end of the mission (i.e., π,i |=φ cannot be evaluated before the mission begins or after the
mission ends).

6 P. Zhang et al.

Definition 10. (MLTL Semantics with Deadline) MLTL Semantics with deadline d extends
the MLTL Semantics in Definition 2. Trace π̂ is defined as a trace of length |π̂|≥|π|where
|π|≤ i+d, the segment π̂[0,|π|−1]=π, and the segment π̂[|π|,|π̂|−1] may be populated
using prediction in order to be able to make an evaluation decision by d. We recursively define
π,i,d |=φ (our decision based on π̂ that trace π starting from time index i≥0 satisfies, or
“models” MLTL formula φ by deadline d) as
• π,i,d |=true,
• π,i,d |=p for p∈AP iff p∈ π̂(i),
• π,i,d |=¬φ iff π̂,i |̸=φ,
• π,i,d |=φ1∧φ2 iff π̂,i |=φ1 and π̂,i |=φ2,
• π,i,d |=φ1 U[lb,ub] φ2 iff |π̂|≥ i+lb and ∃j∈ [i+lb,i+ub] such that π̂,j |=φ2 and for

every k<j and k∈ [i+lb,i+ub] we have π̂,k |=φ1

Fig. 5. Illustrative example.

Illustrative Example. Consider the UAS ex-
ample from Section 1. We want to deploy a
parachute if the UAS’s motors fail as a miti-
gation action to ensure a safe landing. For ex-
ample, let’s assume that if the MLTL formula
φ=2[0,6]a∧3[0,8]b evaluates to false, this in-
dicates motor failure. Fig. 5 shows the runtime
trace π. Here the worst-case propagation delay is
eight (i.e., φ.wpd=8), while the best-case propagation delay is zero (i.e., φ.bpd=0). As a
result, for i=3, π[3,11] is the maximum trace segment required to evaluate π,i |=φ. Let d be
the deadline to trigger the deployment of the parachute, and let tR be the current time stamp.
MPRV monitors atoms a and b based on real and predicted data. If φ evaluates to false at
tR≤i+d based on real data, then the parachute is deployed at time tR. However, there may
not be enough real data at tR=i+d (i.e., because we do not have real data for the future), and
the runtime monitor requires additional predicted data to make an on-deadline evaluation. In
this case, MPRV incrementally queries the model predictor as needed to populate π̂(tR+1),
π̂(tR+2), ... with predicted values of a and b until φ evaluates to true or false. Going back to
our example in Fig. 5, if we let i=3, d=d0=−2, and tR=i+d=1, the model predictor will
populate π̂(2), π̂(3), ... , π̂(11) until the satisfiability of π,i,d |=φ is determinable, and if we
let i=3, d=d1=5, and tR=i+d=8, the model predictor will populate π̂(9), π̂(10), and
π̂(11) until the satisfiability of π,i,d |=φ is determinable. Parachute deployment is triggered
if φ evaluates to false as π̂ is incrementally populated by the predictor. Since tR ≤ i+d,
MPRV ensures that the mitigation action is triggered before the deadline. The goal of MPRV
is to produce a verdict evaluating whether π,i,d |=φ holds. MPRV uses the minimum set
of predicted variable evaluations needed to return a verdict; we determine this minimum set
through partial evaluation of φ at time d.

Definition 11. (Partial Evaluation) The partial evaluation of an MLTL formula φ over trace
π starting from time index i≥0, denoted as φ |(π,i), is the evaluation of φ based on the trace
segment π[i,|π|]. There are two cases of partial evaluation to consider: 1)φ |(π,i)∈{true,false},
and 2) φ |(π,i)/∈{true,false}: in this case, φ |(π,i) returns a subformula produced by standard
logic rewriting rules.
Going back to our illustrative example, we have φ=(2[0,6]a)∧(3[0,8]b), i=0, and |π|=6.
Let evaluations of a and b be π⟨a,b⟩ = [⟨1,0⟩ ,⟨1,1⟩ ,⟨1,0⟩ ,⟨1,1⟩ ,⟨1,0⟩ ,⟨1,0⟩]. Since the

Model Predictive Runtime Verification for Cyber-Physical Systems 7

subformula 3[0,8]b is satisfied at time stamp 1, we have φ |(π,0)=□[6,6]a. To evaluate the
satisfiability of φ, the value for a must be predicted for time stamp 6.

Definition 12. (Prediction Horizon) Let π̂ be a trace of length |π̂|≥|π|where the segment
π̂[0,|π|−1] = π and the segment π̂[|π|,|π̂|−1] may be populated using prediction. The
prediction horizon Hp is the length of the predicted segment of π̂. The maximum prediction
horizon is denoted by max(Hp).

Definition 13. (Model Predictive Runtime Verification (MPRV)) Given an MLTL formula
φ, a trace π, and a deadline d, MPRV produces an execution sequence ⟨Tφ⟩ (as defined
in Definition 8) such that each tuple Tφ with Tφ.τ ≥ i is produced no later than i+d. It
populates a predicted trace π̂ such that |π̂|≥ |π|, |π|≤ i+d, the segment π̂[0,|π|−1]=π,
and the segment π̂[|π|,|π|+Hp] by incrementally increasing prediction horizon Hp until
Tφ.v∈{true,false} as follows:

• d≥φ.wpd: Tφ≡((π,i |=φ),i) (prediction is not required)
• d<φ.bpd: Tφ≡((π,i,d |=φ |(π̂,i)),i) (prediction is required)

• otherwise: Tφ≡


Tφ≡((π,i |=φ),i) if φ |(π,i)∈{true,false}

(prediction is not required)
Tφ≡((π,i,d |=φ |(π̂,i)),i) otherwise

(prediction is required)

Lemma 1, 2, and 3 and corollaries 1 and 2 guarantee the correctness of MPRV and establish
bounds on the produced execution tuples.

Lemma 1 (Minimum Trace Length). Given an MLTL formula φ, a trace π, and a time
t≤|π|, MPRV is guaranteed to produce all of the execution sequence tuples Tφ such that
0≤Tφ.τ≤t−φ.wpd. In other words, the shortest trace segment starting from π[0] that we
can use to guarantee π,t−φ.wpd |=φ is π[0,t]. Fig. 6 provides a visualization of this lemma.

𝑡

𝜋

𝑡 −𝜑.𝑤𝑝𝑑

known trace 𝜋[0: 𝑡]
known 𝜑 verdicts

Fig. 6. Pictorial representation of Lemma 1 for guaranteed execution sequence elements.

Proof. The proof follows directly from induction on the structure of MLTL formula φ and
Definitions 5, 6, and 7. ⊓⊔

Corollary 1 (Verdicts Guaranteed from Real Data). Let tR be the current time stamp.
Given an MLTL formula φ and a trace segment π[0,tR], MPRV is guaranteed to produce
from π (without prediction) all of the execution sequence tuples Tφ such that 0≤Tφ.τ ≤
tR−φ.wpd.

Lemma 2 (Time Stamp Range of New Verdicts). Let tR be the current time stamp. Given
an MLTL formula φ and a trace segment π[0,tR], if MPRV produces Tφ.v from π at time
stamp tR, then Tφ.τ∈ [tR−φ.wpd,tR−φ.bpd]. That is, at time tR, we know the time stamp
range of any newly-produced execution sequence tuple. Fig. 7 provides a visualization of this
lemma.

8 P. Zhang et al.

potential known 𝜑 verdicts
𝑡!𝑡! −𝜑.𝑤𝑝𝑑 𝑡! −𝜑. 𝑏𝑝𝑑

𝜋known trace 𝜋[0: 𝑡!]

Fig. 7. Pictorial representation of Lemma 2 for range of Tφ produced at time tR.

Proof. The proof follows directly from induction on the structure of MLTL formula φ and
Definitions 5, 6, and 7. ⊓⊔

Corollary 2 (Verdicts from Real Data). Let tR be the current time stamp. Given an MLTL
formula φ and a trace segment π[0,tR], MPRV can produce from π (without prediction)
execution sequence tuples Tφ such that 0≤Tφ.τ≤tR−φ.bpd.

Lemma 3 (Maximum Prediction Horizon). Let tR be the current time stamp. Given an
MLTL formula φ, a trace segment π[0,tR], and a deadline d, to determine Tφ with Tφ.τ≥i
in at most d time steps from i (i.e., determine the satisfiability of π,i,d |=φ), the maximum
prediction horizon max(Hp) is bounded such that max(Hp)=φ.wpd−d. Fig. 8 provides a
visualization of this lemma.

𝑖 𝑡! = 𝑖 + 𝑑

𝜋known trace 𝜋[0: 𝑖 + 𝑑] Prediction 3𝜋[𝑖 + 𝑑 + 1: 𝑖 + 𝑑 + 𝐻𝑝]

𝐻"

required trace 𝜋 𝑎𝑛𝑑 3𝜋 to get verdict of 𝜑 at 𝑖

𝑖 + 𝜑. 𝑤𝑝𝑑
known verdict predicted verdict

Fig. 8. Pictorial representation of Lemma 3. Note that in this case, tR=i+d. Hashed regions represent
predicted values, and solid regions represent known values.

Proof. If we let t=i+φ.wpd in Lemma 1, then we are guaranteed to produce all Tφ with
Tφ.τ∈ [0,i]. Given π[0,tR], by Definition 6, one needs to predict at most π̂[tR+1,i+φ.wpd]
to determine π,i,d |=φ. When prediction is required, tR=i+d (as depicted in Fig. 8). Thus
max(Hp)=i+φ.wpd−(i+d)=φ.wpd−d. ⊓⊔

3.1 MPRV Algorithm
This section presents the generic MPRV algorithm (Algorithm 1). In Algorithm 1, the RV
engine in lines 1, 6, and 10 can be any RV engine. We execute this algorithm when new
sensor signals (sreal ∈ Rn, where n is the number of sensors) are available at each time
stamp (tR). These sensor signals are converted into boolean values and represented in trace π.
The sensor signals sreal, current time stamp tR, and trace π are passed as inputs along with
the specification details (i, d, and φ). The RV engine will update the current verdict based
on the trace segment (π[0,tR]) without prediction. If at deadline d we cannot assert true or
false for φ|π,i, the engine will continue partially evaluating the trace using prediction trace
data π̂[0,i+d+1],π̂[0,i+d+2],... generated by model predict. Once true or false can be
asserted for φ|π̂,i, the verdict will be returned.

Theorem 1 (Correctness of MPRV Algorithm). Given an MLTL formula φ, sensor signals
sreal, trace π, deadline d, and a predictor function (model predict) that predicts the sensor
signals at a future time step, the MPRV algorithm (Algorithm 1) computes a predicted trace π̂
and the execution sequence tuple Tφ by using maximum real values and minimum predicted
values required to evaluate π,i,d |=φ such that Tφ.v=true iff π,i,d |=φ.

Model Predictive Runtime Verification for Cyber-Physical Systems 9

Proof. We split the proof into two parts. (1) Maximum real values and minimum predicted
values: MPRV uses all real data values from π up to deadline d (line 1–6). If before the
deadline d, MPRV guarantees RV results without prediction (line 1). If at deadline d, it
partially evaluates formula φ on trace π (line 2–6). If φ|π,i asserts true or false, it returns
the result. Otherwise, φ|π,i returns a subformula with atomic propositions that require at
least one time step of prediction to resolve the formula (follows from Definition 11). This
subformula is checked iteratively at each subsequent time step of prediction until resolved,
resulting in minimum predicted values (lines 7–10). (2) Tφ.v= true↔π,i,d |=φ: (only-if
direction) π,i,d |=φ→Tφ.v= true: If evaluating before deadline d, MPRV guarantees to
return the current result of π,i,d |= φ. If evaluating at deadline d, MPRV guarantees that
trace π̂ contains enough data (follows from Lemma 3) to evaluate π,i,d |=φ, and then uses
partial evaluation of the formula φ to return a final result based on available data (line 11).
(if direction) Tφ.v= true→π,i,d |=φ: If evaluating before deadline d, MPRV guarantees
to terminate and return the current result of π,i,d |=φ. If evaluating at deadline d, MPRV
terminates and returns the final result (true or false) from the partial evaluation when the
satisfiability of π,i,d |= φ is determinable. Note that when at deadline d, MPRV returns
verdicts only when the test condition of the while loop (line 7) evaluates to false. ⊓⊔

Algorithm 1: MPRV Algorithm (Def. 13)
Input: Signals: sreal∈Rn; Current time stamp: tR; Time index: i; Deadline: d;
MLTL formula: φ; Trace: π[0,tR] derived from sreal
Output: Current verdict result for π,i,d |=φ

1 if tR<i+d then returnRV (π[0,tR],i,φ); // Evaluating before deadline

2 else // Evaluating at deadline (i.e., tR=i+d)

3 π̂←π ; // initialize π̂ with the real data

4 t←tR; // initialize t with current time stamp

5 s←sreal; // initialize s with signals data

6 φ|π̂,i←RV (π̂[0,t],i,φ); // RV result of π[0,tR],i|=φ

7 while φ|π̂,i ∉{true,false} do // if prediction is needed, loop

8 t←t+1 ; // look into next prediction step

9 (s,π̂[t])←model predict(s,t); // update s and π̂[t]

10 φ|π̂,i←RV (π̂[0,t],i,φ); // RV result of π̂[0,t],i|=φ

11 return φ|π̂,i; // return true or false at deadline d

3.2 MPRV Implementation using R2U2
We implement the MPRV algorithm using the R2U2 RV engine framework. We first convert
an MLTL formula φ into an AST offline (Section 2.2) and then topologically sort the nodes of
the AST, denoted φAST , by arranging all child nodes before their parent nodes. This offline
step creates a sequence of custom instructions that respects dependencies between instructions,
as depicted in Fig. 2.

The R2U2-specific MPRV algorithm is defined in Algorithm 2. We optimize RV oper-
ations using the MLTL asynchronous observer algorithm in Algorithm 3, which does not
require checking the entire trace when the trace is updated from π[0,t] to π[0,t+1] (refer
to [48] for algorithm details). The verification results in the form of execution sequences for
each node are stored in a data structure called a Shared Connection Queue (SCQ) [34], which
is a circular buffer for storing the execution sequence generated by each node of φAST . Since
the circular buffer overwrites data in a circular way, only a segment of the execution sequence

10 P. Zhang et al.

is kept in each SCQ. To store the necessary real and predicted data, we size the SCQs per the
procedure given in Section 3.3. Before prediction begins, we must cache the local variables of
the SCQ (i.e., read and write pointers). The predictive RV phase of the algorithm executes
until φ|π̂,i evaluates to true or false, which is evaluated by reading the SCQ of the root node
(denoted as φ.Queue). Finally, we restore the previously cached local variables of the SCQs
since the predicted values will now be outdated for the next time step. All of these tasks
should be completed in one sensor sampling period to allow RV to keep pace with real-time.
The algorithm terminates once φ|π̂,i evaluates to true or false, and the verdict is returned.

Algorithm 2: R2U2-specific algorithm for MPRV (Def. 13)
Input: Signals: sreal∈Rn; Current time stamp: tR; Time index: i; Deadline: d;
MLTL formula: φ; Trace: π[0,tR] derived from sreal
Output: Current verdict result for π,i,d |=φ
/* Update φAST for current time stamp tR */

1 for Node g from topologically sorted node list of φAST do
2 RV node one step(π,tR,g); // Algorithm 3

3 if tR<i+d then return read(φ.Queue); // Evaluating before deadline

4 else // Evaluating at deadline (i.e., tR=i+d)
/* store original RV engine state */

5 for Node g from topologically sorted node list of φAST do
6 Store Node g’s local variables; // read/write pointers

7 π̂←π ; // initialize π̂ with the real data

8 t←tR ; // initialize t with current time stamp

9 s←sreal ; // initialize s with signals data

10 φ|π̂,i←read(φ.Queue); // RV result of π[0,tR],i|=φ

11 while φ|π̂,i ∉{true,false} do // if prediction is needed, loop

12 t←t+1 ; // look into next prediction step

13 (s,π̂[t])←model predict(s,t); // update s and π̂[t]

14 for Node g from topologically sorted node list of φAST do
15 RV node one step(π̂,t,g); // Algorithm 3

16 φ|π̂,i←read(φ.Queue) ; // RV result of π̂[0,t],i|=φ

/* restore original RV engine state */

17 for Node g from topologically sorted node list of φAST do
18 Restore Node g’s local variables; // read/write pointers

19 return φ|π̂,i ; // return true or false at deadline d

3.3 Memory and Time Analysis of R2U2 Implementation
Memory Utilization without Prediction. A system utilizing the R2U2 framework needs
memory to store the instructions and SCQs. For each node g in φAST , one queue is needed
(denoted as g.Queue). Because the SCQ overwrites data in a circular way, the queues can be
viewed as sliding windows. Each sliding window takes a segment of the execution sequence
generated from the corresponding child node(s). Each sliding window must store the necessary
data to evaluate the satisfiability of π,i |=φ. The time stamp difference between the inputs of
child nodes can cause an input tuple from a child node g with a higher time index τ to wait
for input(s) from g’s sibling(s). That is, any newly generated output from g will be stalled
in g’s output queue until g’s siblings have the same τ . We show that the required new trace
data for generating the matched time indices of the two input queues is bounded, and we
use bpd and wpd to prove these bounds in Lemma 4. In [25], a similar approach is used for

Model Predictive Runtime Verification for Cyber-Physical Systems 11

Algorithm 3: Run RV for one time stamp on an AST node g; update g’s Queue
with the execution sequence ⟨Tg⟩, which will be propagated up as the input of g’s
parent node(s).
1 functionRV node one step(π,i,g) is

Input: Trace: π; Time index: i; Node: g;
2 if g is anAP operator then

/* record the value of the atomic proposition */

3 if g ∈ π[i] then
4 g.Queue.write((true,i)); // write ⟨Tg⟩
5 else
6 g.Queue.write((false,i)); // write ⟨Tg⟩

7 else
8 ⟨Tg⟩← evaluate MLTL operator g; // Algorithms 3--6 from [34]

9 g.Queue.write(⟨Tg⟩); // write ⟨Tg⟩

estimating resource usage, where they call the delay a horizon; however, they did not consider
the best-case propagation delay or prediction.

Lemma 4 (Memory Usage). Let φAST be the abstract syntax tree generated from the
MLTL formula φ as explained in Section 2.2. For any node g from φAST , let Sg be the set
of all sibling nodes of g. Let g.Queue be the queue for the execution sequence generated
by the runtime observer of g. Then the maximum memory usage of g.Queue is given by
g.Queue.size≤max(max{s.wpd | s∈Sg}−g.bpd,0)+1.

Proof. Refer to the appendix.

MPRV Memory Utilization. We use gMPRV .Queue.size to represent the size of g.Queue
when using MPRV. To prevent overwriting the original SCQ content with predicted data,
we need max(Hp) (as defined in Lemma 3) extra entries in g.Queue; we must prevent
overwriting the original content so we can restore operations after prediction. Therefore,
gMPRV .Queue.size = g.Queue.size+max(Hp). Algorithm 4 of the appendix further
details how to determine the memory usage for each SCQ.

Each queue entry stores a tuple of a verdict and a time index. We use one bit to represent
the verdict, and if we let max(τ) be the length of the mission in terms of the number of time
stamps, then we need ⌈log2max(τ+1)⌉) bits to represent the time stamp. The following
equation gives the total memory size (in bits):

total memory size=(1+⌈log2max(τ+1)⌉)×
∑

g∈φAST

gMPRV .Queue.size

Worst-case Execution Time (WCET). The MPRV worst-case execution time splits into
two parts: the model prediction (WCETMODEL) and RV on the trace π̂ (WCETRV). This
section analyzes WCETRV from line 1 to line 19 except for line 13 in Algorithm 2. The
WCET of line 13 are equivalent to WCETMODEL, which depends on the chosen model
predictor (refer to Section 5.1 for examples).

Lemma 5 (Worst-case Execution Time of RV (WCETRV)). Given an MLTL formula
φ and the output queue size of each node in φAST , let g.input Queue be the sum of
queue sizes of direct child nodes of g, texe be the execution time for an MLTL operator
node to consume one element of the input execution sequence (Algorithm 3), tstore be the

12 P. Zhang et al.

store operation time (Algorithm 2 lines 5–6), and trestore be the restore operation time
(Algorithm 2 lines 17–18). Then the worst-case execution time is given by WCETRV (φ)=∑

g∈φAST
(g.input Queue.size×texe+tstore+trestore).

Proof. Refer to the appendix.

4 Quadcopter Case Study
We demonstrate the utility of MPRV for a UAS quadcopter by simulating a non-linear
quadcopter model ([9, 13])4 whose trajectory is controlled via a linear Model Predictive
Control (MPC) controller; refer to [40] for MPC algorithm details. The upper portion of Fig. 9
shows the actual position of the quadcopter compared to the planned trajectory chosen by
MPC. Note that we use the same model predictor for control and for MPRV in order to save
hardware resources.

Let π be a trace over atomics a0 and a1 at each time index. Table 2 specifies the
atomic propositions that map system requirements to atomics a0 and a1. The specification
φ=(□[5]a0)U[10]a1 in Fig. 9 limits the quadcopter’s vertical velocity for a future five time
steps if the quadcopter keeps diverging from the planned trajectory for the next ten time steps.
This specification is designed to prevent the quadcopter from crashing into the ground at high
speed when diverged far off course. If MPRV returns a false verdict for φ, an appropriate
mitigation strategy can be triggered (e.g., deploying a parachute).

Table 2. Quadcopter Atomic Propositions

Atomic Atomic Proposition
a0 Magnitude of trajectory error (zref−z)≤0.12m

a1 Vertical speed (żk)≥−0.9 m/s

In the lower portion of Fig. 9, if the verdict is true, then π, t |= φ, where t is the
corresponding time-axis value. Due to the nature of future time asynchronous observers, the
evaluation of π,t |=φ is not known until time t or later. We assume the required controller
actuation update rate and sensor sampling rate are 50 Hz (.02 seconds); consequently, MPRV
is run every 0.02 seconds. Fig. 9 compares the responsiveness of π,i,d |=(□[5]a0)U[10]a1
using MPRV with a deadline d=−5 steps (0.1s before violation) and d=10 steps (0.2s after
violation). Given the formula has φ.wpd=15, we compute the maximum prediction horizon
using Lemma 3. This results inmax(Hp)=20when d=−5, andmax(Hp)=5when d=10.
The green and orange bars are associated with a 20 and 5 step prediction horizon, respectively.
The left boundary of the bar is the time when MPRV detects the formula becoming false, and
right boundary is the time when a false verdict is detected without prediction. Note that for
d=−5, the green bars maintain at least 5 time steps ahead of the corresponding false verdict
(marked by red cross). Similarly, when d=10, the orange bars maintain at least 10 steps after
the corresponding false verdict.

In summary, the earlier the deadline, the longer the maximum prediction horizon and the
earlier conclusive results are obtained. These results are in alignment with what one would
intuitively expect. Note that real-world sensors and imperfect knowledge of the model limit
how far one can effectively estimate the future, and the larger the prediction horizon, the
more the prediction is prone to inaccuracies. While we did not account for inaccuracies in our

4 Specific model parameters for the quadcopter model were obtained from [26] and [42]

Model Predictive Runtime Verification for Cyber-Physical Systems 13

implementation, methods have been developed to robustify MPC against model uncertainties
and disturbances [12, 16].

0

1

2

3
A

lt
it

ud
e

(m
) position

planned trajectory

False

True

2[5]a0

False

True

V
er

di
ct

a1

0 4 8 12 16 20

Time (sec)

False

True

(2[5]a0)U[10]a1 d = 10(Hp = 5)d = −5(Hp = 20)

Fig. 9. The position of a quadcopter resulting from MPC and verification results of three formulas. The
red× indicates motor failure. The left end of each green (orange) bar is the formula-violation detection
time using MPRV with a prediction horizon of Hp. The right end of each green (orange) bar is the
formula-violation detection time using RV without prediction.

5 Analysis of Hardware Implementation
Our methodology is applicable across a wide range of systems and applications. When
targeting a given system, users would want to deploy their own mission-specific MLTL
formulas and model predictor. Users can select any model predictor, weighing the trade-
offs between accuracy and performance. Currently, many model predictors exist in the
literature. The most common method for developing system models for prediction is to derive
a differential-algebraic model by analyzing the physical system’s dynamics [15, 18]. Another
common modeling method is system identification, which derives the model of the system by
observing the system’s inputs and corresponding outputs [28, 44]. Data-driven modeling via
machine learning [59] or simulation-based modeling [10, 33] are a few more popular modeling
techniques. Note that MPRV allows for simpler low-fidelity system models for the prediction
of individual variables, and there exists a trade-off in terms of resources and computing
time between low-fidelity and high-fidelity models. We provide details on determining if
MPRV is feasible for an embedded platform’s resource constraints and mission’s performance
requirements in this section.
5.1 FPGA Implementation of Model Predictive Runtime Verification (MPRV)
For experimental evaluation of our implementation, we target a modest-sized Xilinx FPGA
(ZYNQ 7020) [1] and use the Vivado 2019.2 tool-chain [2] to synthesize our MPRV design.
The resource usage of our quadcopter case study is shown in Fig. 10. Note that our implemen-
tation of MPRV and MPC [62] are both modular by design; several software-configurable
registers allow the user to modify MLTL formulas and the MPC’s control algorithm on-the-fly
without having to re-synthesize the hardware. Additionally, the MPC hardware design has a
trade-off between performance and resource utilization; we have maximized the MPC design
to fill up the remaining resources the augmented RV engine (R2U2 with MPRV) did not
use. One example of this performance and resource trade-off is in the MPC’s matrix-vector
multiplier (MVM). The larger the MVM, the faster the MPC can handle larger matrices, i.e.,

14 P. Zhang et al.

the longer the MPC’s prediction horizon or the larger the number of the state variables N .
For our quadcopter example (N=12), Fig. 10 shows that our augmented RV engine requires
additional BRAMs (2.5% of the 280 available 18Kb BRAMs) for instructions, local variables
(defined in [34]), and data transmission FIFOs. When maximizing the MPC design to fill the
rest of the BRAM resources, we can reach a prediction horizon Hp=17.

2.7%

78.1%

19.3%
Look-up Tables (53200)

1.2%

53.5%

45.3%

Flip-Flops (106400)
2.5%

97.5%

BRAM (280)

65.5%

34.5%

DSP (220)

ARV
MPC
unused

Fig. 10. Percentage of resource usage by augmented RV engine (ARV), MPC, and unused resource.
The total amount of each resource available on chip is included inside the parentheses. For the BRAM,
the blue corresponds to a system of 12 state variables (N) withHp=17 .

Recall that our implementation uses an SCQ buffer for each node in φAST as described
in Section 3.2. Given an MLTL formula, sizing SCQs per the procedure given in Section 3.3
guarantees SCQs never overflow. We chose a time stamp width of 31-bits and a total SCQ
size of 512*32 bits, which consumes one 18Kb block RAM (BRAM) [1]. Such memory is
sufficient for the example formulas with a corresponding max(Hp) in Table 3. We also show
the WCETRV of Algorithm 2 for each formula when predicting with max(Hp). Example
execution time of the MPC controller (WCETMODEL) is shown in Fig. 11.

Table 3. Examples of MLTL formulas that can be supported with one 18Kb BRAM in Fig. 10

MLTL Formula max(Hp)WCETRV

a0 509 5.28µs

2[0,10] a0 248 47.87µs

2[0,10] a0 U[0,10] a1 115 67.87µs

2[0,10] a0 ∨2[0,10] a1 90 73.99µs

(a0 U[0,5]a1)∨(a2 U[0,10]a3)∨(2[0,10] a4) 41 82.16µs

Hardware architectures exist that support online configuration of MPC for different
systems, e.g., [62]. Assuming the embedded hardware-based MPC controller of [62] is acting
as the model predictor of our MPRV architecture, we show in Fig. 11 our approach scales
feasibly across a wide range of systems. To give a sense of the range of system complexity
our approach can support, we highlight a point-mass system (N = 2), a quadcopter [35]
(N = 12), and even a reduced order model of a fusion machine [14] (N = 2700 for full
model, but N =30 for reduced model at an accuracy loss of .1%). The left-hand side of
Fig. 11 depicts how memory usage scales with N and Hp, while the right-hand side depicts
how execution time scales. Additionally, the right-hand side of Fig. 11 illustrates how one
would take into account a system’s required sensor update rate to determine how far into
the future we can predict (Hp). This is accomplished using the two horizontal dashed lines
located at .01 seconds (10ms) and at .02 seconds (20ms). For example, if a system requires a
sensor update rate of .01 seconds, then for a quadcopter system model with N=12 one could
have Hp=10 or Hp=20, but not Hp=50 as computation requires more than .01 seconds.
If this same sized system required a sensor update rate of .02 seconds, Hp=50 would be
computed fast enough to meet system dynamic constraints.

Model Predictive Runtime Verification for Cyber-Physical Systems 15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of System State Variables (N)

0.0

0.1

0.2

0.3

0.4

0.5

M
em

or
y

(M
B

)

Point mass Quadcopter

Fusion
machine

Hp = 0
Hp = 10
Hp = 20
Hp = 50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of System State Variables (N)

0.00

0.01

0.02

0.03

0.04

0.05

T
im

e
(s

ec
on

ds
)

Point mass Quadcopter

Fusion
machine

Hp = 0
Hp = 10
Hp = 20
Hp = 50

Fig. 11. Memory and execution time of MPC from [62] with FPGA clock frequency of 130MHz.

In summary, Fig. 11 can help users determine early in a design process whether an
embedded platform’s memory and computing capabilities are sufficient to support MPRV and
reason about system performance and resource trade-offs. For example, in our Quadcopter
case study we needed a prediction horizon of 5 and 20. Regarding computing speed, our
FPGA implementation can handle both cases; however, in terms of memory, the largest Hp

we can support is 17 for the quadcopter model. Thus, either Hp = 17 would need to be
sufficient for the mission, or a slightly larger FPGA would be required.

6 Conclusion and Future Work
The definition and general algorithm for MPRV are extensible; while we have chosen to
exemplify MPRV using MLTL properties verified in the R2U2 engine with an MPC controller
for a quadcopter, all of these choices can be changed or extended. Our results are promising
regarding MPRV’s utility for improving RV responsiveness in real-life scenarios. In particular,
our implementation paves the way for better mitigation of faults by enabling evaluation
of future-time requirements with enough time to trigger mitigation actions during system
runtime. There is now a basis to extend MPRV to other logics (e.g., MTL [4], STL [41],
MLTLM [29]), create implementations that build on other RV engines, and plug in different
model predictors for when prediction steps are necessary. Investigating the trade-offs between
resource demands, performance, and accuracy of different model predictors maps a valuable
landscape for future MPRV design decisions.

We design MPRV to use maximum real values and minimum predicted values presuming
the former is more accurate. However, this is not always the case as both real data and
predicted data have their own associated error distribution (i.e., sensor noise, model parameter
variation, etc.). To robustify MPRV against inaccurate distribution-valued signals, future work
will include investigating techniques for robust satisfaction of MLTL specifications similar
to [22, 45]. While we focused on a priori known deadlines, MPRV is capable of evaluating
specifications with dynamically-defined deadlines; we leave this for future work. An applica-
tion for requiring a dynamically-defined deadline would be an autonomous vehicle’s braking
system; the time required to come to a complete stop dynamically changes based on the
current velocity of the vehicle. Additionally, [23] provides an interesting direction for MPRV.
This work focuses on using multiple model predictors for different components in a complex
system of systems (e.g., a robotic system), but they assume the system has a shared global
clock. This is not always the case, and current work has extended R2U2 to monitor different
timescales through MLTLM specifications [29]. In future work, we also plan to revisit case
studies of running R2U2 on real UAS [17, 27, 48, 49, 52–54] to further explore MPRV.

16 P. Zhang et al.

Appendix
Proof of Lemma 4

𝑖

𝑔. 𝑄𝑢𝑒𝑢𝑒

𝑔! . 𝑄𝑢𝑒𝑢𝑒

…

𝑖+1 𝑖+2 𝑖+k-2 𝑖+k-1𝜏: 𝑖+k

𝑦!…

𝑔" . 𝑄𝑢𝑒𝑢𝑒

…

…𝑦"

…

… …

𝑔

𝑔!

𝑔"

…

ℎ!

ℎ"

𝑥
𝑤𝑟𝑖𝑡𝑒

𝑟𝑒𝑎𝑑

Fig. 12. Analysis of maximum execution sequence time stamp mismatch between sibling nodes. The
squares are data content of g.Queue and all other queues from g’s sibling nodes (g1,...,gp) that share
the same parent nodes (any of h1, h2, ..., hp) with g. In g.Queue, each execution tuple is labeled by
the execution sequence’s τ value ranging from i to i+k. x, y1,. . . ,yp are the latest execution sequence
tuples with the biggest time stamp in the corresponding queue.

Proof. Fig. 12 shows the pictorial representation of the execution sequence tuples inside
g.Queue and g’s sibling nodes at the current time stamp tR. Let the nodes g and g1 be
the child nodes of node h1. The execution sequence tuples with the same time index τ are
consumed/popped from g.Queue and g1.Queue to produce the input tuples of h1. Once
these tuples are consumed by their parent node, they are dropped from the queue (marked
in dashed boxes). Let x be the latest execution sequence tuple in g.Queue with time index
i+ k. Let y1 be the latest execution sequence tuple in g1.Queue with time index i, and
let y1 to have been consumed by h1.Queue. Since y1 was consumed at tR and was not
stalled by g.Queue, y1 must have been produced at tR−1. According to Lemma 2, when
π[0,tR−1] is known, if a new execution tuple Tg1 is inserted into g1.Queue, then Tg1.τ ∈
[tR− 1− g1.wpd,tR− 1− g1.bpd]. Therefore, y1.τ ≥ tR− 1− g1.wpd. Similarly, when
π[0,tR] is known, if there are new execution sequence tuples Tg inserted into g.Queue, then
Tg.τ ∈ [tR−g.wpd,tR−g.bpd]. Therefore, x.τ ≤ tR−g.bpd. The maximum value of k
is max(x.τ)−min(y1.τ) = tR−g.bpd− (tR−1−g1.wpd) = g1.wpd−g.bpd+1. The
maximum number of elements to be stored in g.Queue is bounded by g1.wpd−g.bpd+1, or
1 if the difference is non-positive. The same argument follows for g2,...,gp. Therefore, we
have g.Queue bounded by s.wpd−g.bpd+1 for s∈Sg ={g1,...,gp}, or g.Queue.size≤
max(max{s.wpd | s∈Sg}−g.bpd,0)+1. ⊓⊔

Algorithm for sizing SCQs
We first derive the topologically sorted collection of all nodes from φAST . Second, we
compute and record the bpd and wpd of each node in this collection sequentially (lines 1–2).
Finally, we compute the output queue size for each subformula (lines 3–5).

Algorithm 4: Compute g’s queue size for all node g in the R2U2 AST to optimize
for storing a combination of real and predicted data for MPRV

Input: MLTL: φ; Prediction Horizon:Hp

1 for Node g from topologically sorted node list of φAST do
2 Compute g.bpd and g.wpd ; // Definition 7

3 for Node g in φAST do
4 g.Queue.size←max(max{s.wpd | s∈Sg}−g.bpd,0)+1; // Lemma 4

5 gMPRV .Queue.size←g.Queue.size+Hp; // final queue size

Model Predictive Runtime Verification for Cyber-Physical Systems 17

Proof of Lemma 5
Proof. The WCETRV is the sum of the worst-case execution time of all the nodes in
φAST . The time stamp of the execution sequence tuple for a unary operator node will in-
crease when we write to g.Queue in Algorithm 3. For binary operator node h, at least
one of the inputs’ (g1,g2) time stamp will increase. The increase is bounded by the to-
tal size of the g1.Queue and g2.Queue (from Lemma 4). Let h.input Queue.size =
g1.Queue.size+g2.Queue.size, then the WCETRV for node h is h.input Queue. size
×texe. The total execution time for all nodes in the φAST is

∑
g∈φAST

g.input Queue.
size×texe. When we combine this with the store time (tstore) and restore time (trestore) for
each node, WCETRV (φ)=

∑
g∈φAST

(g.input Queue.size×texe+tstore+trestore). ⊓⊔

References
1. Zynq-7000 soc data sheet: Overview. https://www.xilinx.com/support/

documentation/data_sheets/ds190-Zynq-7000-Overview.pdf (2018)
2. Vivado design suite user guide. https://www.xilinx.com/

support/documentation/sw_manuals/xilinx2019_2/
ug973-vivado-release-notes-install-license.pdf (2019)

3. Adolf, F.M., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream runtime monitoring
on uas. In: RV. pp. 33–49. Springer (2017)

4. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In: LICS. pp. 390–401.
IEEE (1990)

5. Aurandt, A., Jones, P.H., Rozier, K.Y.: Runtime verification triggers real-time, autonomous fault
recovery on the cysat-i. In: NASA Formal Methods Symposium. pp. 816–825. Springer (2022)

6. Babaee, R., Ganesh, V., Sedwards, S.: Accelerated learning of predictive runtime monitors for rare
failure. In: International Conference on Runtime Verification. pp. 111–128. Springer (2019)

7. Babaee, R., Gurfinkel, A., Fischmeister, S.: Prevent: A predictive run-time verification framework
using statistical learning. In: SEFM. pp. 205–220. Springer (2018)

8. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-time reacha-
bility properties in black-box systems using trace-level abstraction and statistical learning. In: RV.
pp. 187–204. Springer (2018)

9. Balas, C., Whidborne, J., of Engineering, C.U.S.: Modelling and Linear Control of a Quadrotor.
Theses 2007, Cranfield University, School of Engineering (2007), https://books.google.
com/books?id=7PIYyAEACAAJ

10. Banaei, M.R., Alizadeh, R.: Simulation-based modeling and power management of all-electric
ships based on renewable energy generation using model predictive control strategy. ITSM 8(2)
(2016)

11. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D., Sankaranarayanan, S.:
Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications.
Lectures on Runtime Verification: Introductory and Advanced Topics pp. 135–175 (2018)

12. Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Robustness in identifica-
tion and control, pp. 207–226. Springer (2007)

13. Bolandi, H., Rezaei, M., Mohsenipour, R., Nemati, H., Smailzadeh, S.M.: Attitude control of a
quadrotor with optimized pid controller. Intelligent Control and Automation 4, 335–342 (2013)

14. Bonotto, M., Bettini, P., Cenedese, A.: Model-order reduction of large-scale state-space models in
fusion machines via krylov methods. IEEE Transactions on Magnetics 53(6), 1–4 (2017)

15. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering with
MATLAB Exercises. John Wiley & Sons, Inc., 4th edn. (2012), iSBN-13 978-0-470-60969-9

18 P. Zhang et al.

16. Bujarbaruah, M., Rosolia, U., Stürz, Y.R., Borrelli, F.: A simple robust mpc for linear systems with
parametric and additive uncertainty. In: 2021 American Control Conference (ACC). pp. 2108–2113.
IEEE (2021)

17. Cauwels, M., Hammer, A., Hertz, B., Jones, P., Rozier, K.Y.: Integrating Runtime Verification
into an Automated UAS Traffic Management System. In: DETECT. Springer, L’Aquila, Italy
(September 2020)

18. Chen, C.: Linear System Theory and Design. Oxford University Press, Inc., 3rd edn. (1999),
iSBN-13 978-0-19-511777-6

19. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with partial observability
and resets. In: International Conference on Runtime Verification. pp. 165–184. Springer (2019)

20. Dabney, J.B., Badger, J.M., Rajagopal, P.: Adding a verification view for an autonomous real-time
system architecture. In: Proceedings of SciTech Forum. p. Online. 2021-0566, AIAA (January
2021). https://doi.org/https://doi.org/10.2514/6.2021-0566

21. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B.,
Mehrotra, S., Manna, Z.: Lola: runtime monitoring of synchronous systems. In: TIME. pp. 166–174
(2005)

22. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time
signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

23. Ferrando, A., Cardoso, R.C., Farrell, M., Luckcuck, M., Papacchini, F., Fisher, M., Mascardi, V.:
Bridging the gap between single-and multi-model predictive runtime verification. Formal Methods
in System Design pp. 1–33 (2022)

24. Ferrando, A., Delzanno, G.: Incrementally predictive runtime verification. In: CILC. pp. 92–106
(2021)

25. Finkbeiner, B., Kuhtz, L.: Monitor circuits for ltl with bounded and unbounded future. In: RV. pp.
60–75. Springer (2009)

26. Förster, J.: System identification of the crazyflie 2.0 nano quadrocopter (2015)
27. Geist, J., Rozier, K.Y., Schumann, J.: Runtime Observer Pairs and Bayesian Network Reasoners

On-board FPGAs: Flight-Certifiable System Health Management for Embedded Systems. In: RV.
vol. 8734, pp. 215–230. Springer-Verlag (September 2014)

28. Greblicki, W.: Continuous-time hammerstein system identification from sampled data. TAC 51(7),
1195–1200 (2006)

29. Hariharan, G., Kempa, B., Wongpiromsarn, T., Jones, P.H., Rozier, K.Y.: Mltl multi-type (mltlm):
A logic for reasoning about signals of different types. In: International Workshop on Numerical
Software Verification, Workshop on Formal Methods for ML-Enabled Autonomous Systems. pp.
187–204. Springer (2022)

30. Heffernan, D., Macnamee, C., Fogarty, P.: Runtime verification monitoring for automotive em-
bedded systems using the iso 26262 functional safety standard as a guide for the definition of
the monitored properties. IET Software 8(5), 193–203 (October 2014). https://doi.org/10.1049/iet-
sen.2013.0236

31. Hertz, B., Luppen, Z., Rozier, K.Y.: Integrating runtime verification into a sounding rocket control
system. In: NASA Formal Methods Symposium. pp. 151–159. Springer (2021)

32. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Nickovic, D.: From signal temporal
logic to FPGA monitors. In: MEMOCODE. pp. 218–227 (Sept 2015)

33. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based approaches for verification
of embedded control systems: An overview of traditional and advanced modeling, testing, and
verification techniques. Control Systems Magazine 36(6), 45–64 (2016)

34. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding Online Runtime
Verification for Fault Disambiguation on Robonaut2. In: Proceedings of the 18th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS). pp. 196–214.
Lecture Notes in Computer Science (LNCS), Springer, Vienna, Austria (September 2020), http:
//research.temporallogic.org/papers/KZJZR20.pdf

Model Predictive Runtime Verification for Cyber-Physical Systems 19

35. Kurak, S., Hodzic, M.: Control and estimation of a quadcopter dynamical model. Periodicals of
Engineering and Natural Sciences 6(1), 63–75 (2018)

36. Leucker, M.: Sliding between model checking and runtime verification. In: RV. pp. 82–87. Springer
(2012)

37. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In: International
Conference on Computer Aided Verification. pp. 3–22. Springer (2019)

38. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for stl runtime
verification. arXiv preprint arXiv:2211.01539 (2022)

39. Lu, H., Forin, A.: The Design and Implementation of P2V, An Architecture for Zero-Overhead
Online Verification of Software Programs. Tech. Rep. MSR-TR-2007-99, Microsoft Research
(August 2007)

40. Maciejowski, J.M.: Predictive control: with constraints. Pearson education (2002)
41. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Formal Tech-

niques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166. Springer
(2004)

42. McInerney, I.: Development of a multi-agent quadrotor research platform with distributed computa-
tional capabilities. Ph.D. thesis, Iowa State University (2017)

43. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP runtime verification
framework. STTT 14(3), 249–289 (2012)

44. Naung, Y., Schagin, A., Oo, H.L., Ye, K.Z., Khaing, Z.M.: Implementation of data driven control
system of dc motor by using system identification process. In: EIConRus. pp. 1801–1804 (2018)

45. Pant, Y.V., Abbas, H., Quaye, R.A., Mangharam, R.: Fly-by-logic: Control of multi-drone fleets with
temporal logic objectives. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS). pp. 186–197. IEEE (2018)

46. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring for dependable
COTS-based real-time embedded systems. RTSS pp. 481–491 (2008)

47. Pinisetty, S., Jéron, T., Tripakis, S., Falcone, Y., Marchand, H., Preoteasa, V.: Predictive runtime
verification of timed properties. Journal of Systems and Software 132, 353–365 (2017)

48. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system
health management of real-time systems. In: Proceedings of the 20th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in
Computer Science (LNCS), vol. 8413, pp. 357–372. Springer-Verlag (April 2014)

49. Rozier, K.Y., Schumann, J., Ippolito, C.: Intelligent Hardware-Enabled Sensor and Software Safety
and Health Management for Autonomous UAS. Technical Memorandum NASA/TM-2015-218817,
NASA (May 2015)

50. Rozier, K.Y., Schumann, J.: R2U2: Tool Overview. In: Proceedings of International Workshop on
Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime Verification
Tools (RV-CUBES). vol. 3, pp. 138–156. Kalpa Publications, Seattle, WA, USA (September 2017)

51. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: Monitoring and Diagnosis of Security Threats
for Unmanned Aerial Systems. In: Proceedings of the 15th International Conference on Runtime
Verification (RV15). Springer-Verlag, Vienna, Austria (September 2015)

52. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A Tool Exhibition
Report. In: RV. Springer-Verlag, Madrid, Spain (September 2016)

53. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards
real-time, on-board, hardware-supported sensor and software health management for unmanned
aerial systems. In: PHM. pp. 381–401 (October 2013)

54. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito, C.: Towards
real-time, on-board, hardware-supported sensor and software health management for unmanned
aerial systems. IJPHM 6(1), 1–27 (June 2015)

55. Selyunin, K., Nguyen, T., Bartocci, E., Nickovic, D., Grosu, R.: Monitoring of MTL specifications
with IBM’s spiking-neuron model. In: DATE. pp. 924–929 (March 2016)

20 P. Zhang et al.

56. Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying Runtime Monitoring for Automotive
Electronic Development, pp. 462–469. Springer International Publishing, Cham (2016)

57. Tiger, M., Heintz, F.: Stream reasoning using temporal logic and predictive probabilistic state
models. In: TIME. pp. 196–205. IEEE (2016)

58. Todman, T., Stilkerich, S., Luk, W.: In-circuit temporal monitors for runtime verification of
reconfigurable designs. In: DAC. pp. 50:1–50:6. ACM, New York, NY, USA (2015)

59. Torabi, A.J., Er, M.J., Li, X., Lim, B.S., Zhai, L., Oentaryo, R.J., Peen, G.O., Zurada, J.M.: A
survey on artificial intelligence-based modeling techniques for high speed milling processes. IEEE
Systems Journal 9(3), 1069–1080 (2015)

60. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime monitoring for
linear stochastic systems and applications to geofence enforcement for uavs. In: RV. pp. 349–367.
Springer (2019)

61. Yu, X., Dong, W., Yin, X., Li, S.: Model predictive monitoring of dynamic systems for signal
temporal logic specifications. arXiv preprint arXiv:2209.12493 (2022)

62. Zhang, P., Zambreno, J., Jones, P.H.: An embedded scalable linear model predictive hardware-based
controller using admm. In: ASAP. pp. 176–183. IEEE (2017)

63. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: NFM. pp.
418–432. Springer (2012)

