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Model Checking

Model Checking:
@ Create a system model with formal semantics, M.
@ Encapsulate desired properties in a formal specification, f.
© Check that M satisfies f.

Model checking finds disagreements between
the system model and the formal specification.
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Model Checking

Model Checking:
@ Create a system model with formal semantics, M.
@ Encapsulate desired properties in a formal specification, f.
© Check that M satisfies f.

Model checking finds disagreements between
the system model and the formal specification.

Successful industrial adoption!

NASA uses the explicit state Spin Model Checker for analysis of
aerospace systems.
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How Is Model Checking Implemented?

Explicit Model Checkers:
@ Construct explicit automaton for specification.
@ Search explicitly for a trace falsifying the specification.

o Look for an accepting run of the property automaton.
o Look for an accepting lasso by finding strongly connected
components in the model/automaton graph.
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Automata-Theoretic Approach to Model Checking
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Explicit Model Checking With Spin
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Explicit Model Checking With Spin
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We are the first to measure these compilation and model checking stages
separately
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LTL-to-Automaton Complexity

@ LTL property of size m
@ Model of size n
o LTL model checking takes time n-2°9("),

LTL-to-automata translation has dramatic impact on model checking.

@ heavily studied

Promela never claims for Spin Model Checker:
@ hardly studied

The encoding of A_r as a never claim has a major impact on complexity.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking



Preliminaries
€000000

Related Work: Many Ways of Generating A-¢

o LTL2AUT ... .o (Daniele, Guinchiglia, Vardi)

Implementations (Java, Perl) ............... .. ... ... LTL2Buchi, Wring
@ LTL2BA (C) oo (Oddoux, Gastin)
@ LTL2Buchi (Java) ...t (Giannakopoulou, Lerda)
@ LTL — NBA (Python) ......coiiiiiiiiiiiii.. (Fritz, Teegen)
@ Modella (C) ... (Sebastiani, Tonetta)
@ Spot (C) ........... (Duret-Lutz, Poitrenaud, Rebiha, Baarir, Martinez)
@ TMP (SMLof NJ) ..o (Etessami)
@ Wring (Perl) ... .. (Somenzi, Bloem)

All of these produce nondeterministic automata for general LTL formulas.
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Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!
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Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.
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Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.

We don’t need the rest of the lasso!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking



Preliminaries
0@00000

Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.
We don’t need the rest of the lasso!

We can form deterministic automata on finite words!
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A Nondeterministic Property Automaton

H(ALwWAYS(XXX q | !p)) = EVENTUALLY(p & XXX Iq)

true true
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A Deterministic Property Automaton

EVENTUALLY (p & XXX Iq)
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Determinism in Model Checking

@ When the automaton is nondeterministic, the model checker has to
find paths in both the system and the property automaton.

@ When the automaton is deterministic, the model checker has to find
a path only in the system.

@ We do one search instead of two!

@ This may increase model checking scalability!
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Determinism in Model Checking

@ When the automaton is nondeterministic, the model checker has to
find paths in both the system and the property automaton.

@ When the automaton is deterministic, the model checker has to find
a path only in the system.

@ We do one search instead of two!
@ This may increase model checking scalability!

Safety properties are 90% of specifications!

Only one tool: scheck! = buggy

1T. Latvala. Efficient model checking of safety properties. In SPIN, pages 74-88,
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Quality Explicit-State Tool?
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onjunction of X-subformulas.

Linearly nested X-operators.

°Rozier, Kristin Y., and Vardi, Moshe Y. "LTL Satisfiability Checking.” In
International Journal on Software Tools for Technology Transfer (STTT),
Springer-Verlag, March, 2010.
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Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?
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Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?

Can new encodings for explicit automata improve model
checking performance?

Can we exploit determinism to improve our never claims?

YES!
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Encoding Safety Formulas Deterministically

We form a never claim for =¢ from ¢:

@ SPOT: ¢ — Nondeterministic Biichi Automaton (NBW) A,
@ SPOT: compute empty(Ay) & remove from A,

© relabel remaining states accepting — Nondeterministic Finite
Automaton (NFW) A(’;

@ determinize with subset construction — Ag

complement: only the empty set of states is now accepting — Aﬂ¢

© 0

translate deterministic automaton into never claim

Many different ways to perform the last three steps ...
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A Set of 26 Promela Never Claim Encodings

Our novel encodings are combinations of seven components:
@ Determinization: beforehand® (det) or on-the-fly (nondet)
@ Transitions: looking forward (front) or backward (back)

©® Encoding: front_nondet, back nondet, back_det,
front_det_switch, front_det_memory_table

@ State Minimization: min or nomin

© Alphabet Representation (for minimization): BDDs or assignments or
assignments with edge abbreviation

@ State Representation: state numbers or state labels

@ Acceptance: finite or infinite

Winning Encoding: front_det_switch min abr_ea state_fin

3with BRICS Automaton
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Encoding Forms and Determinization

never {
Si:
atomic {
if
(1p2)
-> goto done;
(('p0 && p2)
Il (pl && p2))
-> goto S1;
fi;

front_det_state

neve
do

r {
: atomic{
/*Swap current_state and next_state: */
/* do current_state[i] = next_statel[i]; i++;*/

/*Reset next_state: next_state[i] = 0%/

if  /*Fill in next_state array*/

current_state[1] ->

if :: (pO && pl && p2 )

-> next_state[0] = 1;
:: else -> skip;
fi;
if :: ((!p0 && p2) || ('pl && p2) )

-> next_state[1] = 1;
:: else -> skip;

fi;

:: else -> skip;
fi;

front_nondet_number

in Y. Rozier & Moshe Y. i m/Safety Properties/Explicit Model Checking
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Determinization On-the-fly: Forward vs Backward

? ?

front _nondet encoding back nondet encoding
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State Minimization and Alphabet Representation

Example transition label: (po&p1&p2)

Integer label i: 0 </ < 2" I(p) = po2™ 1 4+-p12" 2 4. . 4+ py2°

1 1 1
HEE B b B

Assignment-based

|
N
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State Representation and Acceptance Conditions

never {
if (property is violated) finite acceptance:
-> goto done; proceed to }
done: ////////ﬂk‘\\\\\\\\
skip;

infinite acceptance:
loop
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Edge Abbreviation for Determinized Encodings

p0 & Ipl & p2

Ip0 & pl & p2 current\(P2 & 'p0) || (p2 & !pl);

Ip0 & !pl & p2

Transitions Without Transition With
Edge Abbreviation Edge Abbreviation

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking
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26 Combinations

State Alphabet Automaton Monitor State
Minimization Representation | Acceptance Encoding Representation
no front_nondet
BDDs
back-nondet
front_nondet
number
finite back_nondet
assignments back_det
yes front_det_memory_table
infinite
front_det_switch state/number
assignments-+edge
abbreviation back_det number

n Y. Rozier & Mos
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Extensive Empirical Evaluation

@ Model-Scaling Benchmarks

o 14 real-life safety formulas
o Scaled universal models

@ Formula-Scaling Benchmarks

e Two classes of
randomly-generated safety

o Syntactically safe

o One large universal model

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Exp Model Checking
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Experimental Results

@ We consistantly beat SPOT in model checking time

@ One of our encodings is always best:
front_det_switch_min_abr_ea_state_fin

© There seems to be a partial order on the performance of our
encodings:
e Deterministic automata are faster than nondeterministic
Determinization up front is faster than on-the-fly
Finite acceptance is faster than infinite acceptance
State labels are faster than state numbers
Switch-statement format is best
State minimization and edge abbreviation lead to better performance

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking
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Sometimes Deterministic Automata Are Much Better
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Model-Checking Performance for Industrial Specifications

Model-Scaling Benchmark Workload
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Formula-Scaling Performance for Random Specifications

5 Variable Random Formulas
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Discussion

@ Deterministic encodings are faster than nondeterministic encodings.

@ One deterministic encoding is always best:
front_det_switch_min_abr_ea_state_fin.

Winning encoding implemented in open-source CHIMP-Spin tool!

Recommend CHIMP-Spin for safety formulas; SPOT for all others.
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Spin's Nested Depth First Search Algorithm

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
delete s from Stack
end
proc ndfs(s) /* the nested search */
add {s,1} to Statespace
for each (selected) successor t of s do
if {t,1} not in Statespace then ndfs(t) fi
else if t in Stack then report cycle fi
od
end

Y. Rozier & Moshe Y. Val

it Model Checking



Visualization of a Universal Model:

A State-Labeled Universal Model with 2 Propositions

1p&g

1py

Y. Rozier & Moshe Y. Vardi | Deter m/Safety Properties/Ex|

Model Checking



Model-Scaling Benchmarks*
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O(request — X grant)
O(=(p A )

O(p — (X¥xXq))
X((p A q)Rr)

x(0(p))
O(q v x0p) A O(r v XO=p)
X([O(q v o0p) AO(r v oO=p)] v Oq Vv Or)

O(p — (g A Xq A XXq))
(((((POR(=p1))R(=p2))R(=P3))R
(=p4))R(=p5))

(O((pO A =p1) — (O=plV (=plU(p10 A —pl)))))

(O(=p0 — ((—p1ttp0) v U=pl)))

((B(p1 — B(=p1 — (=p0 A =p1)))) A (O(p2 —
O(=p2 — (=p0 A =p1)))) A (O=p2 v (—p2Lipl)))
((B(p1 — O(=p1 — (=p0 A =p1)))) A (O(p2 —
O(=p2 — (=p0 A =p1)))) A (O=p2 V (~p2Upl)))

“Something bad never happens.”

“Every request is immediately followed by a grant”
Mutual Exclusion: “p and g can never happen at the
same time."

“Always, p implies g will happen 3 time steps from
now."

“Condition r must stay on until buttons p and q are
pressed at the same time.”

slightly modified intentionally safe formula from KV99c
accidentally safe formula from KV99c

slightly modified pathologically safe formula from
KV99c

safety specification from TRV11

Sieve of Erathostenes

G.L. Peterson’s algorithm for mutual exclusion algo-
rithm

CORBA General Inter-Orb Protocol

GNU i-protocol, also called iprot

Sliding Window protocol

4 . . . X
Starred formulas are checked against a universal model that sets all variables to true first.
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