Deterministic Compilation of

Temporal Safety Properties in
Explicit State Model Checking

Kristin Y. Rozier and Moshe Y. Vardi

Rice University

v
A

November 8, 2012

RICE
CQ"."WliR Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction
©0000

Model Checking

Model Checking:
@ Create a system model with formal semantics, M.
@ Encapsulate desired properties in a formal specification, f.
© Check that M satisfies f.

Model checking finds disagreements between
the system model and the formal specification.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction
©0000

Model Checking

Model Checking:
@ Create a system model with formal semantics, M.
@ Encapsulate desired properties in a formal specification, f.
© Check that M satisfies f.

Model checking finds disagreements between
the system model and the formal specification.

Successful industrial adoption!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction
©0000

Model Checking

Model Checking:
@ Create a system model with formal semantics, M.
@ Encapsulate desired properties in a formal specification, f.
© Check that M satisfies f.

Model checking finds disagreements between
the system model and the formal specification.

Successful industrial adoption!

NASA uses the explicit state Spin Model Checker for analysis of
aerospace systems.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction
00000

How Is Model Checking Implemented?

Explicit Model Checkers:
@ Construct explicit automaton for specification.
@ Search explicitly for a trace falsifying the specification.

o Look for an accepting run of the property automaton.
o Look for an accepting lasso by finding strongly connected
components in the model/automaton graph.

l Al A . .

/ N P \
L)) (] A(F/)))
J N/ N /N _/

(

\

Y. Rozier & Moshe Y. Vardi Deter: m/Safety Properties/Ex Model Checking

Introduction
00000

Automata-Theoretic Approach to Model Checking

® M

Ay~ p—> EMPTY?

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction

[e]e]e] lo}

Explicit Model Checking With Spin

~f

O
\O Ve Promela
never claim

Y

Promela — C C = binary Model EMPTY?
Appmy Check

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Introduction

[e]e]e] lo}

Explicit Model Checking With Spin

~f

—O—0Q—=0

\O v Promela
never claim

Y

Promela — C

A -f

*{ C — binary }—»

Model EMPTY?
Check

We are the first to measure these compilation and model checking stages
separately

Kristin Y. Rozier & Moshe Y. Vardi

Determinism/Safety Properties/Explicit Model Checking

Introduction
0oo0e

LTL-to-Automaton Complexity

@ LTL property of size m
@ Model of size n
o LTL model checking takes time n-2°9("),

LTL-to-automata translation has dramatic impact on model checking.

@ heavily studied

Promela never claims for Spin Model Checker:
@ hardly studied

The encoding of A_r as a never claim has a major impact on complexity.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
€000000

Related Work: Many Ways of Generating A-¢

o LTL2AUTo (Daniele, Guinchiglia, Vardi)

Implementations (Java, Perl) LTL2Buchi, Wring
@ LTL2BA (C) oo (Oddoux, Gastin)
@ LTL2Buchi (Java) ...t (Giannakopoulou, Lerda)
@ LTL — NBA (Python)coiiiiiiiiiiiii.. (Fritz, Teegen)
@ Modella (C) ... (Sebastiani, Tonetta)
@ Spot (C) (Duret-Lutz, Poitrenaud, Rebiha, Baarir, Martinez)
@ TMP (SMLof NJ) ..o (Etessami)
@ Wring (Perl) (Somenzi, Bloem)

All of these produce nondeterministic automata for general LTL formulas.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
0@00000

Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
0@00000

Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
0@00000

Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.

We don’t need the rest of the lasso!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
0@00000

Model Checking Safety Properties

Safety: “something bad never happens”
(ALWAYS —something _bad)

;"Somelhing Bad!

Search for a bad prefix.
We don’t need the rest of the lasso!

We can form deterministic automata on finite words!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
fele] Yololele)

A Nondeterministic Property Automaton

H(ALwWAYS(XXX q | !p)) = EVENTUALLY(p & XXX Iq)

true true

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
0000000

A Deterministic Property Automaton

EVENTUALLY (p & XXX Iq)

Y. Rozier & Moshe Y. Va /Explicit Model Checking

Preliminaries
000000

Determinism in Model Checking

@ When the automaton is nondeterministic, the model checker has to
find paths in both the system and the property automaton.

@ When the automaton is deterministic, the model checker has to find
a path only in the system.

@ We do one search instead of two!

@ This may increase model checking scalability!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
000000

Determinism in Model Checking

@ When the automaton is nondeterministic, the model checker has to
find paths in both the system and the property automaton.

@ When the automaton is deterministic, the model checker has to find
a path only in the system.

@ We do one search instead of two!

@ This may increase model checking scalability!

Safety properties are 90% of specifications!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
000000

Determinism in Model Checking

@ When the automaton is nondeterministic, the model checker has to
find paths in both the system and the property automaton.

@ When the automaton is deterministic, the model checker has to find
a path only in the system.

@ We do one search instead of two!
@ This may increase model checking scalability!

Safety properties are 90% of specifications!

Only one tool: scheck! = buggy

1T. Latvala. Efficient model checking of safety properties. In SPIN, pages 74-88,

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

SPOT is the Only Industrial

Preliminaries
0000000

Quality Explicit-State Tool?

10000

8000

6000

4000

Time in Seconds

2000

Total Processing Time on 3-variable Counter Formulas

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL->NBA
Modella

Spot

™P

Wring
CadenceSMV
NuSMV
SAL-SMC

NuSMV Spot

Tmp LTL2AUT(W)

T T T T B |
6 7 8 91011121314151617 18192021

2345
Number of bits in binary counter

Total P Time on 3 Linear Counter Formulas
10000 [~ LTL2AUT(B) NusMv
| e LTL2AUT(W)
———— LTL2BA CadenceSMV
[= LTL2Buchi
| LTL->NBA
8000 f-========Modella
| Spot
— TMP
» | s Wring
o + CadenceSMV
£ 6000 |-——— Nusmv
3 | e SAL-SMC
@
(7] L
£ L
i -
4000 I
=
2000 (-
[LTL->NBA
| Modella TM:”"DSZL_S
0 2345678 9101112131415161718192021

Number of bits in binary counter

C

onjunction of X-subformulas.

Linearly nested X-operators.

°Rozier, Kristin Y., and Vardi, Moshe Y. "LTL Satisfiability Checking.” In
International Journal on Software Tools for Technology Transfer (STTT),
Springer-Verlag, March, 2010.

Y. Rozier & Moshe Y. Vard

Model Check

Preliminaries
000000@

Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
000000@

Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?

Can new encodings for explicit automata improve model
checking performance?

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
000000@

Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?

Can new encodings for explicit automata improve model
checking performance?

Can we exploit determinism to improve our never claims?

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Preliminaries
000000e

Can We Now Improve Explicit Encodings?

Can we improve upon the SPOT encoding for safety
formulas?

Can new encodings for explicit automata improve model
checking performance?

Can we exploit determinism to improve our never claims?

YES!

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings
©0000000

Encoding Safety Formulas Deterministically

We form a never claim for =¢ from ¢:

@ SPOT: ¢ — Nondeterministic Biichi Automaton (NBW) A,
@ SPOT: compute empty(Ay) & remove from A,

© relabel remaining states accepting — Nondeterministic Finite
Automaton (NFW) A(’;

@ determinize with subset construction — Ag

complement: only the empty set of states is now accepting — Aﬂ¢

© 0

translate deterministic automaton into never claim

Many different ways to perform the last three steps ...

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings
0®000000

A Set of 26 Promela Never Claim Encodings

Our novel encodings are combinations of seven components:
@ Determinization: beforehand® (det) or on-the-fly (nondet)
@ Transitions: looking forward (front) or backward (back)

©® Encoding: front_nondet, back nondet, back_det,
front_det_switch, front_det_memory_table

@ State Minimization: min or nomin

© Alphabet Representation (for minimization): BDDs or assignments or
assignments with edge abbreviation

@ State Representation: state numbers or state labels

@ Acceptance: finite or infinite

Winning Encoding: front_det_switch min abr_ea state_fin

3with BRICS Automaton

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Altern

ative Encodings

[e]e] lele]elele)

Encoding Forms and Determinization

never {
Si:
atomic {
if
(1p2)
-> goto done;
(('p0 && p2)
Il (pl && p2))
-> goto S1;
fi;

front_det_state

neve
do

r {
: atomic{
/*Swap current_state and next_state: */
/* do current_state[i] = next_statel[i]; i++;*/

/*Reset next_state: next_state[i] = 0%/

if /*Fill in next_state array*/

current_state[1] ->

if :: (pO && pl && p2)

-> next_state[0] = 1;
:: else -> skip;
fi;
if :: ((!p0 && p2) || ('pl && p2))

-> next_state[1] = 1;
:: else -> skip;

fi;

:: else -> skip;
fi;

front_nondet_number

in Y. Rozier & Moshe Y. i m/Safety Properties/Explicit Model Checking

Alternative Encodings
000@0000

Determinization On-the-fly: Forward vs Backward

? ?

front _nondet encoding back nondet encoding

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings
00008000

State Minimization and Alphabet Representation

Example transition label: (po&p1&p2)

Integer label i: 0 </ < 2" I(p) = po2™ 1 4+-p12" 2 4. . 4+ py2°

1 1 1
HEE B b B

Assignment-based

|
N

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings
00000800

State Representation and Acceptance Conditions

never {
if (property is violated) finite acceptance:
-> goto done; proceed to }
done: ////////ﬂk‘\\\\\\\\
skip;

infinite acceptance:
loop

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings

[e]e]e]ele]e] Jo)

Edge Abbreviation for Determinized Encodings

p0 & Ipl & p2

Ip0 & pl & p2 current\(P2 & 'p0) || (p2 & !pl);

Ip0 & !pl & p2

Transitions Without Transition With
Edge Abbreviation Edge Abbreviation

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Alternative Encodings
0000000e

26 Combinations

State Alphabet Automaton Monitor State
Minimization Representation | Acceptance Encoding Representation
no front_nondet
BDDs
back-nondet
front_nondet
number
finite back_nondet
assignments back_det
yes front_det_memory_table
infinite
front_det_switch state/number
assignments-+edge
abbreviation back_det number

n Y. Rozier & Mos

Method
°

Extensive Empirical Evaluation

@ Model-Scaling Benchmarks

o 14 real-life safety formulas
o Scaled universal models

@ Formula-Scaling Benchmarks

e Two classes of
randomly-generated safety

o Syntactically safe

o One large universal model

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Exp Model Checking

Results
©000

Experimental Results

@ We consistantly beat SPOT in model checking time

@ One of our encodings is always best:
front_det_switch_min_abr_ea_state_fin

© There seems to be a partial order on the performance of our
encodings:
e Deterministic automata are faster than nondeterministic
Determinization up front is faster than on-the-fly
Finite acceptance is faster than infinite acceptance
State labels are faster than state numbers
Switch-statement format is best
State minimization and edge abbreviation lead to better performance

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

Results
000

Sometimes Deterministic Automata Are Much Better

iprot Formula shiding_window Formula

40000 [- 40000
front_det_switch_min_abr_sa_state_fin
Deterministic Encodings.

SPOT
front_det_switeh_min_abr_oa_state_fin
Deterministic Encodings {

G 35000 T 35000

3 3

@ @

g 30000 g 30000

c c

S 25000 Q 25000

] 5

]]

X 20000 X 20000

@ @

o o

c (=

£ 15000 = 15000

o o

@ @

= =

9 10000 9 10000

@ @

° °

o o

€ 5000 € 5000
0 ~ — ""' 0
o526 27 26 29 30 31 32 34 36 37 25 26 27 28 29 30 31 32 33 34 35 36 37

number of propositions |n the UM number of propositions in the UM

Y. Rozier & Mosh Model Chec

Results
[eYe] Yo

Model-Checking Performance for Industrial Specifications

Model-Scaling Benchmark Workload

250000

8 . _ sPoT ; @ Workload: 14 industrial
; B front_det_switch_min_abr_ea_state_fin i . .
200000 - i speuﬁcatlons.
< - i
£ [i

3 i i

g1s0000 i @ Across the whole

Q o | .

> L benchmark suite, we
£ r

$100000 - have a factor of ~ 2x
K=
2 i performance in MC
-é 50000 | time.

E -

3 L

a i .

o= el = e il BTN R BRI |
24 26 28 30 32 34
number of propositions in the UM

Y. Rozier & Moshe Y. Vardi | Deter m/Safety Properties/Ex| Model Checl

Results
oooe

Formula-Scaling Performance for Random Specifications

5 Variable Random Formulas

100000
95000
90000
85000

°

9 80000

£ 75000

£ 70000

----- - SPOT
front_det_switch_min_abr_ea_state_fin s

T

e @ ~ 300 formulas

e o factor of 5 speedup

cki
(%))
a
o
o
o
AT Lttt e
\,

/Safety Properties/Ex

Discussion
°

Discussion

@ Deterministic encodings are faster than nondeterministic encodings.

@ One deterministic encoding is always best:
front_det_switch_min_abr_ea_state_fin.

Winning encoding implemented in open-source CHIMP-Spin tool!

Recommend CHIMP-Spin for safety formulas; SPOT for all others.

Kristin Y. Rozier & Moshe Y. Vardi Determinism/Safety Properties/Explicit Model Checking

BACKUP SLIDES

Y. Rozier & Moshe Y. Vard

Spin's Nested Depth First Search Algorithm

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do
if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
delete s from Stack
end
proc ndfs(s) /* the nested search */
add {s,1} to Statespace
for each (selected) successor t of s do
if {t,1} not in Statespace then ndfs(t) fi
else if t in Stack then report cycle fi
od
end

Y. Rozier & Moshe Y. Val

it Model Checking

Visualization of a Universal Model:

A State-Labeled Universal Model with 2 Propositions

1p&g

1py

Y. Rozier & Moshe Y. Vardi | Deter m/Safety Properties/Ex|

Model Checking

Model-Scaling Benchmarks*

4*
5*

7*

<)

10

11
12

13

O-bad
O(request — X grant)
O(=(p A)

O(p — (X¥xXq))
X((p A q)Rr)

x(0(p))
O(q v x0p) A O(r v XO=p)
X([O(q v o0p) AO(r v oO=p)] v Oq Vv Or)

O(p — (g A Xq A XXq))
(((((POR(=p1))R(=p2))R(=P3))R
(=p4))R(=p5))

(O((pO A =p1) — (O=plV (=plU(p10 A —pl)))))

(O(=p0 — ((—p1ttp0) v U=pl)))

((B(p1 — B(=p1 — (=p0 A =p1)))) A (O(p2 —
O(=p2 — (=p0 A =p1)))) A (O=p2 v (—p2Lipl)))
((B(p1 — O(=p1 — (=p0 A =p1)))) A (O(p2 —
O(=p2 — (=p0 A =p1)))) A (O=p2 V (~p2Upl)))

“Something bad never happens.”

“Every request is immediately followed by a grant”
Mutual Exclusion: “p and g can never happen at the
same time."

“Always, p implies g will happen 3 time steps from
now."

“Condition r must stay on until buttons p and q are
pressed at the same time.”

slightly modified intentionally safe formula from KV99c
accidentally safe formula from KV99c

slightly modified pathologically safe formula from
KV99c

safety specification from TRV11

Sieve of Erathostenes

G.L. Peterson’s algorithm for mutual exclusion algo-
rithm

CORBA General Inter-Orb Protocol

GNU i-protocol, also called iprot

Sliding Window protocol

4 . . . X
Starred formulas are checked against a universal model that sets all variables to true first.

Y. Rozier & Moshe Y. Vard

Model Check

	Introduction
	

	Preliminaries
	

	Alternative Symbolic Automata Encodings
	

	Experimental Method
	

	Experimental Results
	

	Discussion
	

	

